期刊文献+

改进的T-S模糊神经网络在化工软测量中的应用 被引量:28

Improved T-S fuzzy neural network applied in soft sensing of chemical industry
下载PDF
导出
摘要 软测量技术在化工生产过程中具有较好的应用前景,适合于监测测量成本高、难于或无法实际测量的过程变量。将改进的T-S模糊神经网络模型引入到软测量建模中,通过偏差校正网络对系统输出量进行动态补偿,可比传统T-S模糊神经网络模型获得更好的系统辨识效果,通过实际测试,软测量结果的均方误差可降低约70%左右。改进的T-S模糊神经网络中由于增加了偏差补偿系统,因此软测量精度获得提高。 Soft sensing has a better application prospect in the measuring of chemical industry process, it is suitable to use in the case of watching the variables which are difficult or unable to be measured, or some of them can be measured, but it implements with a high cost. An improved T-S fuzzy neural network had been introduced to the modeling of soft sensing, and the system output can be compensated by the output of the deviation corrected network dynamically. It achieved a better result than the traditional T-S fuzzy neural network. The MSD of soft sensing can be decreased 70% by testing in practice. The improved T-S fuzzy neural network can achieve a better performance by using the additional deviation compensation system in the model structure.
作者 张颖
出处 《电子测量与仪器学报》 CSCD 2010年第6期585-589,共5页 Journal of Electronic Measurement and Instrumentation
关键词 软测量 T-S模糊神经网络 模糊规则 催化裂化 soft sensing T-S fuzzy neural network fuzzy rule catalytic cracking
  • 相关文献

参考文献15

二级参考文献92

共引文献124

同被引文献292

引证文献28

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部