期刊文献+

基于RBF神经网络的复杂场景人群目标的识别 被引量:5

Recognizing the Passenger Number in Complex Scenes by RBF Neural Network
下载PDF
导出
摘要 大型公共建筑内人群数目及分布的在线监测是有效控制和疏散客流、保障人员安全的重要依据之一.利用公共建筑内现有的闭路电视监视系统,通过计算机视觉技术实现人群数目的自动识别是目前国外普遍采用的一种方式.文中提出了一种基于RBF神经网络的复杂场景人群目标的识别算法,利用包含行人数目信息的前景图像的投影曲线等特征数据,通过训练好的RBF神经网络直接得到该前景图像中包含的人群数目.与其他算法相比,该算法具有较高的识别准确率,在一定误差范围内可以达到较好的效果. Monitoring real-time pedestrians' information on-line in large public buildings is very important to control and evacuate these pedestrians. By existing closed-circuit television surveillance systems in public buildings, automatic identification of crowds based on computer vision technology is commonly used abroad. In this paper, pedestrians' data reorganization algorithm based on RBF neural network is proposed. This algorithm can recognize extractive foreground image and collect pedestrians' data including their number and density. Compared with other algorithms, the presented method is low timeconsuming and high precise.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第4期29-33,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 北京市自然科学基金资助项目(9052007)
关键词 人群识别 图像处理 RBF神经网络 crowd recognition image process RBF neural network
  • 相关文献

参考文献7

  • 1Gavrila D M, Giebel J, et al. Vision-Based Pedestrian Detection: the Protector System[C]//Proc. of the IEEE Intelligent Vehicles Symposium. Parma, Italy: Institute of Electrical and Electronics Engineers Inc. 2004: 14- 17. 被引量:1
  • 2Cristobal Curio, Johann Edelbrunner, Thosmas Kalinke, et al. Walking Pedestrian Recognition [ J]. IEEE Transactions on ITS, 2000,1(3) : 155 - 163. 被引量:1
  • 3Gray D, Tao H. Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features[C]//Inc: Computer Vision: ECCV 2008. France, Marseille: Springer, 2008 : 262 - 275. 被引量:1
  • 4沙玲,吕朝辉.立体视觉测量中的一种摄像机标定方法[J].机械制造,2003,41(5):10-11. 被引量:4
  • 5Andreone L, Bellotti F, Gloria A De, et al. SVM-Based Pedestrian Recognition on Near-InfraRed Images [ C ] ///Inc: ISPA 2005: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis. Croatia, Zagreb: Institute of Electrical and Electronics En- gineers Computer Society, 2005: 274-278. 被引量:1
  • 6阮鹏,赵明生.一种头肩像序列的人脸快速定位算法[J].计算机工程与应用,2003,39(29):125-127. 被引量:4
  • 7陈凤东,洪炳镕.基于动态阈值背景差分算法的目标检测方法[J].哈尔滨工业大学学报,2005,37(7):883-884. 被引量:43

二级参考文献15

  • 1徐杰,施鹏飞.基于相位一致与区域生长的自然彩色图像分割[J].电子学报,2004,32(7):1203-1205. 被引量:12
  • 2Weng J, Cohen P, Herniou N. Calibration of stereo cameras u sing a non - linear distortion model. Proc. International Conf. onPattem Recognition, 1990, 246 - 253. 被引量:1
  • 3janne Heikkila. Olli Silven. A four - step camera calibration procedure with implicit image correction. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Puerto Rico, 1997:1106 - 1112. 被引量:1
  • 4Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Trans. on PAMI, 1992, 14(10): 965 - 980. 被引量:1
  • 5Funahashi K. On the approximate realization of continuous mappin by neural network. Neural Networks, 1989, 2:183 - 192. 被引量:1
  • 6Yingen X, Guangzhao Z. On - line inspection and accuracy analysis for parts using neural network. SPIE Conf. on Machine Vision System for Inspection and Metrology, 1998, 3251 : 168 - 178. 被引量:1
  • 7Jun Miao et al.A hierarchical muhiscale and muhiangle system for human face detection in a complex background using gravity-center template[J].Pattern Recognition, 1999; 32 ( 7 ). 被引量:1
  • 8Leung T K,Burl M C,Perona P.Finding faces in cluttered scenes using random labeled graphic matching[C].In:Fifth Intl Conf on Comp Vision,Cambridge M A,1995. 被引量:1
  • 9John Hartung,Amaud Jacquin,Jonathan Rosenberg.Object-oriented H.263 compatible video coding platform for conferencing applications[J]. IEEE Journal on Selected Areas in Communications, 1998; 16(1). 被引量:1
  • 10BORENTEIN J. Mobile robot positioning sensors and techniques[ J]. Journal of Robotic Systems, 1997,14(4): 231 -249. 被引量:1

共引文献47

同被引文献26

引证文献5

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部