期刊文献+

基于RBF神经网络的润滑油自动识别系统设计 被引量:1

Design of a System for Lubricating Oil Type Recognition Based on Radial-Basis-Function Neural Network
下载PDF
导出
摘要 目前通过油料常规质量指标和成分结构信息进行油料种类识别的方法因所需仪器设备多,分析测试过程复杂而缺乏实用性和推广价值;在分析油品理化性能指标与其类别间的相关关系及神经网络的特点后,以最简单方式提取尽可能多的特征参数为原则,通过表观特征参数的途径,设计了一种简单小巧的装置,可同时提取油料密度、粘度、吸光度、电导率和介电常数等参数的特征向量,提出了用RBF神经网络进行油料种类识别的方法,并给出了实现算法;实验结果及应用情况表明,该方法识别效果比较理想,为当前油料种类识别问题给出了一种新的解决途径。 At present,the species of oil can nearly only be identified by its conventional quality indexes and composition.But this needs many instruments,and the recognition process is complicated,so it is almost impossible to put these methods into promoted application.After analyzing the relationship between oil species and its physicochemical properties and the characteristic of neural networks,a compact device for oil's characteristic parameters extraction is designed.Through apparent parameters,this device can extract oil's density,viscosity,absorbency,conductivity and permittivity with the simplest structure.This paper gives an oil species recognition method using RBF neural network as well as its algorithm.Experiments and applications indicate that this method has ideal recognition effect,and it is possible to identify the species,grade and brand of other kinds of oil products.This method has given a new solution for oil species recognition.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第2期484-486,493,共4页 Computer Measurement &Control
基金 四川理工学院科技项目(2009XJKYL005 2009xjkyL013)资助
关键词 油料种类识别 径向基函数神经网络(RBFNN) 特征参数提取 表观特征参数 oil species recognition radial-basis-function neural network characteristic parameter extraction apparent characteristic parameters
  • 相关文献

参考文献10

  • 1李子存.汽油质量指标快速检测新技术的研究[D].重庆:解放军后勤工程学院,2006.. 被引量:1
  • 2王帅.介电谱技术识别油品种类研究[D].重庆:解放军后勤工程学院,2007. 被引量:1
  • 3管亮,冯新泸,熊刚,林国美,王帅.介电谱技术快速识别不同配方体系内燃机润滑油[J].石油学报(石油加工),2008,24(3):350-355. 被引量:6
  • 4Brezmes J, Cabre P, Rojo S, Llobet E, Vilanova X, Correig X. Discrimination Between Different Samples of Olive Oil Using Varia- ble Selection Techniques and Modified Fuzzy Artmap Neural Net- works[J]. IEEE SENSORS JOURNAL, JUNE2005, 5 (3): 463 --470. 被引量:1
  • 5Valbuena J, Motero R, Reich E--M. Enhanced oil recovery meth- ods classification using radial basis function neural network [A]. Proceedings. IJCNN 2001. International Joint Conference on Neural Networks [C]. Vol. 3: 2065--2070. 被引量:1
  • 6胡广书编著..数字信号处理 理论、算法与实现[M].北京:清华大学出版社,1997:490.
  • 7边肇其,张学工等.模式识别(第二版)[M].北京:清华大学出版社,2000. 被引量:1
  • 8杨怡,任庆昌,褚俊英.基于RBF网络的变风量空调送风量软测量研究[J].计算机测量与控制,2010,18(12):2721-2723. 被引量:2
  • 9王雪.智能软计算及其应用[M].北京:清华大学出版社,2007. 被引量:2
  • 10白静,张雪英,侯雪梅.基于RBF神经网络的抗噪语音识别[J].计算机工程与应用,2007,43(22):28-30. 被引量:4

二级参考文献20

  • 1王军,王雁,阎威武,邵惠鹤.采用软测量技术提高变风量空调系统的性能[J].上海交通大学学报,2007,41(3):428-431. 被引量:3
  • 2张刚,张雪英.语音信号处理[M].北京:兵器工业出版社,2000:72-73. 被引量:1
  • 3Guo J J,Luh P B.Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction[J].IEEE Transactions on Power Systems,2003,18(2):665-672. 被引量:1
  • 4Musavi M,Ahmed W,Chan K,et al.On the training of radial basis function classifiers[J].Neural Networks,1992,5(5):595-603. 被引量:1
  • 5Schwenker F,Kestle H A.Three learning phases for radial-basisfunction networks[J].Neural Networks,2001,14(4/5):439-458. 被引量:1
  • 6MICHAEL A K, COSTANDY S S.用介电常数检测脂类润滑油[C]//军用航油-国外部分,北京:空军油料研究所,1991:22-26. 被引量:1
  • 7BARDETSKY A. Evaluating properties of oil using dielectric spectroscopy: US 6449580[P], 2002-09-10. 被引量:1
  • 8SHAYEGANI A A, BORSI H, GOCKENBACH E, et al. Application of low frequency dielectric spectroscopy to estimate condition of mineral oil[C]// 15th Intern Conference on Dielectric Liquids (ICDL), Coimbra.. Portugal, 2005: 285-288. 被引量:1
  • 9NEIMANIS R, ARVIDSSON L, WERELIUS P. Dielectric spectroscopy characteristics of aged transformer oils [C]// Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference, USA: IEEE, 2003: 289-293. 被引量:1
  • 10ZAENGL W S. Applications of dielectric spectroscopy in time and frequency domain for HV power equipment[J]. IEEE Electrical Insulation Magazine, 2003, 19(6): 9-22. 被引量:1

共引文献10

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部