期刊文献+

一种新的限制精英的多目标进化算法

A New Multi-objective Evolutionary Algorithm Based on Limited Elitist
下载PDF
导出
摘要 在NSGA-Ⅱ算法的基础上,文中提出了一种新的限制精英的多目标进化算法(LEMOEA)。通过分布函数的引入,限制了精英选取的数量,增大了解的搜索区域,从而更好地维护了种群多样性。动态变异算子的引入,减缓了算法的收敛速度,增大了解的搜索区域,避免了算法早熟收敛或陷入局部最优。实验结果表明:LEMOEA比NSGA-Ⅱ有更好的收敛效果和种群多样性。 This paper proposes a new mLdti-objective evolutionary algorithm based on limited elitist (LEMOEA) which is based on NSGA-II. It uses the distribution function to limit the number of individuals chosen by the elitist scheme and increase the ability to search solutions. Therefore, a good diversity of the solutions can be kept effectively. Moreover, the adoption of the dynamic mutation operator reduces the convergence speed of the algorithm, enlarges the area of solution searching and avoids the premature convergence and local optimization of fhe algorithm. Experimental resuits show that LEMOEA has greater convergent speed and better diversity of solutions than NSGA-II.
作者 杨善学
出处 《电子科技》 2009年第9期71-74,共4页 Electronic Science and Technology
关键词 多目标进化算法 NSGA-Ⅱ 分布函数 动态变异算子 MOEA NSGA-II distribution function dynamic mutation operator
  • 相关文献

参考文献1

二级参考文献4

  • 1姚新,陈国良,徐惠敏,刘勇.进化算法研究进展[J].计算机学报,1995,18(9):694-706. 被引量:102
  • 2Goldberg D E. Genetic Algorithms in Search,Optimization, and Machine Learning[M]. Massachusetts: Addison-Wesley.Reading,1989. 被引量:1
  • 3Horn J, Nafpliotis and Goldberg D E. Multiobjective optimization using the niche Pareto genetic algorithm[R].Tech Report,IlliGAL Report,1993(5). 被引量:1
  • 4Schaffer, J D. Some experiments in machine learning using vector evaluated genetic algorithms[D].Doctoral dissertation, Vanderbilt University,1984. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部