期刊文献+

改进UKF算法在双基阵纯方位目标跟踪中的应用 被引量:2

Application of Improved UKF in Bearings-only Target Tracking Using Bistatic Sonar
下载PDF
导出
摘要 传统算法在解决纯方位目标跟踪时存在有偏、收敛速度慢或发散等不足,无迹卡尔曼滤波(UKF)虽然改善了系统线性化误差,但并没有明显改善卡尔曼滤波器容易发散的问题。文章在扩展卡尔曼滤波和UKF算法的基础上,提出一种衰减记忆UKF算法(MAUKF),引进衰减因子加强对当前测量数据的利用,减小历史数据对滤波的影响。理论分析和仿真结果表明,MAUKF算法在纯方位目标跟踪中的滤波精度、稳定性和收敛时间都优于EKF、UKF算法。 The traditional algorithms applied in bearings-only target tracking have some shortages or disadvantages such as biased, slow convergence or divergence. The UKF algorithm improves the linearization of system, but it doesn't amend the robustness of system obviously. In this paper, an improved UKF named MAUKF (Memory Attenuated Unscented Kalman Filtering) algorithm which is based on the extended Kalman filter and the UKF is proposed. The MAUKF algorithm improves the robustness by using a fading factor. Theoretical analysis and simulation result indicate that the UKF has better performance than EKF and UKF algorithms in precision, stability and convergence time when it is applied in bearing-only target tracking.
出处 《舰船电子工程》 2009年第8期75-78,共4页 Ship Electronic Engineering
关键词 纯方位 非线性滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 bearings-only, nonlinear filtering, exlended Kalman filter, unscented Kalman filter
  • 相关文献

参考文献9

二级参考文献19

  • 1董志荣.纯方位系统TMA非线性最小二乘法——理论数学模型与常规算法[J].情报指挥控制系统与仿真技术,2005,27(1):4-8. 被引量:13
  • 2董志荣.纯方位系统TMA非线性最小二乘法——工程数学模型与算法[J].情报指挥控制系统与仿真技术,2005,27(2):4-7. 被引量:10
  • 3[1]Lawson C L,Hanson R J.Solving Least Squares Problems[J].Prentice-Hall Inc,1974. 被引量:1
  • 4[3]Lindgren A G,Gong K F.Properties of a Bearings-only Motion Analysis Estimator:An Interesting Case Study in System Observability[J].12th Asilomar Conference on Circuit,Systems and Computers,1978:50-58. 被引量:1
  • 5[4]Chernoguy N G.A Smoothed Newton-Gauss Method with Application to Bearing-only Position Location[J].IEEE Trans.on Signal Processing,1995,43(8):2011-2013. 被引量:1
  • 6[8]董志荣.舰艇指控系统的理论基础[M].北京:国防工业出版社,1997. 被引量:1
  • 7AIDALA V J,HAMMEL S E.Utilization of modified polar coordinates for bearings-only tracking[J].IEEE Transactions on Automatic Control,1983,28(3):283-294. 被引量:1
  • 8SONG T L,SPEYER J L.A stochastic analysis of a modified gain extended Kalman filter with applications for estimation with bearings only measurements[J].IEEE Transaction on Automatic Control,1985,30(3):940-949. 被引量:1
  • 9J Baniak,G Baker,A M Cunningham,L Martin.Silent SentryTM:passive surveillance,Tech.Rep.[R].Gaithersburg,MD:Lockheed Martin Mission Systems,1999. 被引量:1
  • 10Julier S J,Uhlmann J K.A General Method for Approximating Nonlinear Transformations of Probability Distributions[R]// Technical report.UK:PRG,Dept.of Engineering Science,University of Oxford,1996. 被引量:1

共引文献9

同被引文献23

  • 1江连海,王卓,戴志诚,汪秉文.基于UML的J2EE平台电子政务系统[J].兵工自动化,2004,23(6):44-45. 被引量:1
  • 2惠斌,陈法领,罗海波.基于互信息的目标跟踪方法[A].2007年光电探测与制导技术的发展与应用研讨会论文集[C].2007. 被引量:1
  • 3Kalman R E. A New Approach to Linear Filtering and Predic-tion Problems[J]. Trans ASME, Journal of Basic Engineering,1960,82(1):35-45. 被引量:1
  • 4J. W. Austin, C. T. Leondes. Statistically Linearized Estima-tion of Reentry Trajectories[J]. IEEE Trans. Aerospace andElectronic Systems, 1981,17(1) : 54-61. 被引量:1
  • 5B. Ristic,S. Arulampalam,N. Gordon. Beyond the KalmanFilter-Particle Filters for Tracking Applications [ M]. Boston-London: Artech House,2004. 被引量:1
  • 6A. Farina,B. Ristic, D. Benvenuti. Tracking a Ballistic Tar-get: Comparison of Several Filters[J]. IEEE Trans. Aerospaceand Electronic Systems,2002,38(3) : 1916-1924. 被引量:1
  • 7A. Farina, D. Benvenuti, B. Ristic. A Comparative Study ofthe Benes Filtering Problem[J]. Signal Processing, 2002, 82:133-147. 被引量:1
  • 8B. D. O. Anderson, J. B. Moore. Optimal Filtering[M]. En-glewood Ciffs, NJ: Prentice-Hall, 1979:341. 被引量:1
  • 9Gordon N J,Salmond D J, Smith A F M. A Novel Approachto Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEEProceedings on Radar and Signal Processing, 1993,140(2) : 107-113. 被引量:1
  • 10P. J. Harrison, C. F. Stevens. Bayesian forecasting(with dis-cussion) [J]. J. R. Statist. Soc. B, 1976,38:205-247. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部