期刊文献+

线性序拓扑空间上不稳定流形的映射性质 被引量:4

Features of Mapping of a Unstable Manifold on Linear Ordered Topological Space
下载PDF
导出
摘要 文章研究完备稠序的线性序拓扑空间上连续自映射f的不稳定流形。首先证明了不动点P的不稳定流形与P的任意邻域V的交集,通过f有限次迭代之后,会包含P的不稳定流形。然后利用此结果证明了f^k在p_i(1≤i≤k)的不稳定流形被f映射的象集合为f^k在f(p_i)的不稳定流形(其中p_i为f的k-周期轨上的点)。 In this paper, the unstable manifold of a continuous self-mapping f on a completely densely ordered linear ordered topological space is discussed. First of all, it is proved that the intersection of the unstable manifold of a fixed point p and arbitrary neighborhood of point p, by the finite iteration of f, will contains the unstable manifold of point p. Then, by using of the above conclusion, the following result is obtained, f maps the unstable manifold of f^k at pi (1 ≤ i ≤ k) to the unstable manifold of f^k at f(pi ) ( pi is a point in periodic orbit with period k of f ).
出处 《四川理工学院学报(自然科学版)》 CAS 2009年第4期32-34,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 国家自然科学基金资助(10671134)
关键词 线性序拓扑空间 不稳定流形 周期点 连续自映射 linear ordered topological space unstable manifold periodic point continuous self-mapping
  • 相关文献

参考文献9

二级参考文献19

  • 1张更容,曾凡平,严可颂.华沙圈上的一些动力学性质(英文)[J].广西大学学报(自然科学版),2006,31(1):36-39. 被引量:1
  • 2胡超杰,马东魁.一些紧致系统的拓扑序列熵和广义specification性质[J].广东工业大学学报,2007,24(2):24-26. 被引量:2
  • 3Walters P.An introduction to ergodic theory [M ]. New York:Springer-Verlag.1982. 被引量:1
  • 4Goodman T.Topological sequence entropy Proc[J].London Math.Soc.,1974,29(7):331-350. 被引量:1
  • 5Lemanczycz M.The sequence entropy for Morse shifts and some counterexamples [J]. Studia Math., 1985,82 (6): 221-241. 被引量:1
  • 6Bahbrea^* F, Jimenez Lopez^+ V. Some results on entropy and sequence entropy[J].International Journal of Bifurcation and Chaos,1999,9(9):1731-1742. 被引量:1
  • 7Jose S,Ca'novas.A chaotic interval map with zero sequence entropy[J].Aequationes Math.,2002,64(5):53-61. 被引量:1
  • 8Ca'novas,Rodr'guez J.Topological entropy of maps on the real line [J]. Topology and its Applications,2005,153 (4):735-746. 被引量:1
  • 9Misiurewicz M.On Bowen's defnition of topological entropy [J]. Discret and Cont Dynam. Syst, 2004, 10 (3): 827-833. 被引量:1
  • 10李水银.分形[M].北京:高等教育出版社,2004. 被引量:2

共引文献4

同被引文献30

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部