期刊文献+

基于阶次小波包与粗糙集的轴承复合故障诊断 被引量:6

Compound Fault Diagnosis of Bearing Based on Order Tracking and Wavelet Packet and Rough Sets
下载PDF
导出
摘要 针对齿轮箱启动过程中振动信号表现为非平稳非高斯特征,传统诊断方法诊断精度不高的现状,将阶次小波包和粗糙集理论引入到轴承的复合故障诊断中,利用计算阶次跟踪算法对瞬态振动信号进行重采样,采用小波包对该信号分解-重构,并对每个频段的能量进行归一化,构成一个特征向量,通过粗糙集理论得到清晰、简明的决策规则。并通过复合故障实例验证了此方法的有效性。 The vibration signals at start-up in the gearbox are non -stationary signals, and traditional ways of diagnosis have low precision. Order tracking and wavelet packet and rough sets theory are introduced in the compound - fault diagnosis of bearing. First, the vibration signals at start - up were resampled using computer order tracking arithmetic, and wavelet packet is used for equal angle distributed vibration signals decomposition and reconstruction. Second, energy distribution of every frequency band can be calculated according to normalization process. A new feature vector and clear and concise decision rules can be obtained by rough sets theory. Finally, the result of compound - fault example proves that the proposed method has high validity.
出处 《轴承》 北大核心 2009年第9期53-56,共4页 Bearing
基金 国家自然科学基金资助(项目编号:50775219)
关键词 滚动轴承 复合故障诊断 小波包 粗糙集理论 阶次跟踪 rolling bearing compound-fault diagnosis wavelet packet rough sets theory order tracking
  • 相关文献

参考文献14

二级参考文献70

共引文献346

同被引文献79

  • 1赵洪杰,潘紫微,童靳于,刘燕.基于相空间重构与非线性流形的滚动轴承复合故障诊断[J].振动与冲击,2013,32(11):41-45. 被引量:4
  • 2李辉,郑海起,唐力伟.应用Hilbert-Huang变换的齿轮磨损故障诊断研究[J].振动.测试与诊断,2005,25(3):200-204. 被引量:18
  • 3Radfar, M. H. Faez, K. Sayadiyan,A. Mobini, N. Branch, Wavelet packet based features selection and fuzzy ARTMAP neural network classifier for speech classification. Signal Processing and Information Technology[ C] ,2003:620 - 624. 被引量:1
  • 4Patra, K. Pal, S.K. Bhattacharyya, Drill Wear Monitoring through Current Signature Analysis using Wavelet Packet Transform and Artificial Neural Network. Industrial Technology, ICIT 2006 [ C] , 2006:1344 - 1348. 被引量:1
  • 5Li Peng-Yang, Hao Chong-Yang, Zhu Shuang-Wu, Machining Tools Wear Condition Detection Based on Wavelet Packet. Machine Learning and Cybernetics, vol 3 [ C ], 2007. 1559 - 1564. 被引量:1
  • 6Zhang Jun, Li Rui-Xin, Han Pu, Wang Dong-Feng, Yin Xi-Chao, Wavelet packet feature extraction for vibration monitoring and fault diagnosis of turbo-generator [ A ] Machine Learning and Cybernetics, 2003 International Conference, vol I[C], 2003:76-81. 被引量:1
  • 7Xu Chuang-wen, Liu Zhe, Luo Wen-cui, A Frequency Band Energy Analysis of Vibration Signals for Tool Condition Monitoring[ A]. Measuring Technology and Mechatronics Automation, 2009, ICMTMA 09, vol 1 [ C] , 2009:385 - 388. 被引量:1
  • 8Yen,G. G. Lin, K. -C, Wavelet packet feature extraction for vibration monitoring. Industrial Electronics, vol 47 [ M ], 2000:650 - 667. 被引量:1
  • 9Peng-yu, Bao Mei, Yuan Zhong Fu, Research on monitoring technology of bolt tightness degree based on wavelet analysis. Electronic Measurement & Instruments, vol 4 [ C ], 2009:329 -333. 被引量:1
  • 10Qiang Shen,Richard J.Rough Sets.their extensions and applications[J].International Journal of automation andcoputing,2007,4(3):217-228. 被引量:1

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部