摘要
目的研究正规结构所需的充分条件。方法以Banach空间几何理论为工具。结果根据Milman光滑模,给出了空间有正规结构的几何条件,证明了若存在τ∈(0,1]使得βX(τ)<ω(X),τ则空间有正规结构。结论正规结构所需的几何条件更弱,从而改进了高继的相应结果。
Aim To study the sufficient condition for normal structure. Methods Geometric Theory of Banach space. Results A geometric condition was obtained for normal structure, proving that βx(τ)〈ω(X)τ for some τ∈(0,1 ] implying normal structure. Conclusion The geometric condition given here is more general and therefore a improvement of GAO J's results.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第4期556-557,561,共3页
Journal of Northwest University(Natural Science Edition)
基金
河南省科技厅基金资助项目(072300410090)
河南省教育厅自然科学基金资助项目(2008A110012)
关键词
Milman光滑模
凸性模
正规结构
Milman's modulus of smoothness
modulus of convexity
normal structure