期刊文献+

Milman光滑模与正规结构

Milman′s modulus of smoothness and normal structure
下载PDF
导出
摘要 目的研究正规结构所需的充分条件。方法以Banach空间几何理论为工具。结果根据Milman光滑模,给出了空间有正规结构的几何条件,证明了若存在τ∈(0,1]使得βX(τ)<ω(X),τ则空间有正规结构。结论正规结构所需的几何条件更弱,从而改进了高继的相应结果。 Aim To study the sufficient condition for normal structure. Methods Geometric Theory of Banach space. Results A geometric condition was obtained for normal structure, proving that βx(τ)〈ω(X)τ for some τ∈(0,1 ] implying normal structure. Conclusion The geometric condition given here is more general and therefore a improvement of GAO J's results.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期556-557,561,共3页 Journal of Northwest University(Natural Science Edition)
基金 河南省科技厅基金资助项目(072300410090) 河南省教育厅自然科学基金资助项目(2008A110012)
关键词 Milman光滑模 凸性模 正规结构 Milman's modulus of smoothness modulus of convexity normal structure
  • 相关文献

参考文献8

  • 1GAO J. On some geometric parameters in Banach spaces [J]. J Math Anal Appl,2007,334:114-122. 被引量:1
  • 2GAO J, I,AU K S. On two classes of Banach spaces with normal structure[J]. Studia Math, 1991, 99 (1) :41- 56. 被引量:1
  • 3GAO J. A Pythagorean approach in Banach spaces [ J ]. J Inequal Appl, 2006, ( 2006 ) : 1-11. 被引量:1
  • 4SIMS B. A class of spaces with weak normal structure [J]. Bull Austral Math Soc,1994, 50:523-528. 被引量:1
  • 5MELADO J A, FUSTER E L, SAEJUNG S. The yon Neumann-Joran constant, weak orthogo-nality and normal structure in Banach spaces [ J ]. Proc Amer Math Soc, 2006,134(2) :355-364. 被引量:1
  • 6MILMAN V D. Geometric theory of Banach spaces [ J ]. Russian Math Surveys, 1971,26:79-163. 被引量:1
  • 7王丰辉,杨长森.Banach空间有一致正规结构的充分条件[J].数学学报(中文版),2008,51(4):761-768. 被引量:1
  • 8HE C, CUI Y. Some properties concerning Milman's moduli [J].J Math Anal Appl,2007,329:1 260-1 272. 被引量:1

二级参考文献15

  • 1Gao J., Lau K. S:, On two classes Banazh spaces with uniform normal structure, Studia Math. 1991, 99: 41-56. 被引量:1
  • 2Clarkson J. A., The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math., 1937, 38: 114-115. 被引量:1
  • 3Kato M., Maligranda L., Takahashi Y., On James and Jordan-von Neumann constants and normal structure coefficient of Banazh spaces, Studia Math., 2001, 144: 275-295. 被引量:1
  • 4Gobel K., Kirk W. A., Topics in metric fixed point theory, Cambridge: Cambridge University Press, 1990. 被引量:1
  • 5Dhompongsa S., Kaewkhao A., Tasena S., On a generalized James constant, J. Math. Anal. Appl., 2003, 285: 419-435. 被引量:1
  • 6Dhompongsa S., Piraisangjun P. and Saejung S., On a generalized Jordan-von Neumann constants and uniform normal structure, Bull. Austral. Math. Soc., 2003, 67: 225-240. 被引量:1
  • 7Dhompongsa S., Domlnguez-Benavides T., Kaewcharoen A., Kaewkhao A., Panyanak B., The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings, J. Math. Anal. Appl. 2006, 320: 916-927. 被引量:1
  • 8Saejung S., On James and von Neumann-Jordan constants and sufficient conditions for the fixed point property, J. Math. Anal. Appl., 2006, 323: 1018-1024. 被引量:1
  • 9Bynum W. L., Normal structure coefficients for Banach spaces, Pacific. J. Math., 1980, 86: 427-436. 被引量:1
  • 10Sims B., Smyth M. A., On some Banach space properties sufficient for weak normal structure and their permanence properties, Trans. Amer. Math. Soc., 1999, 351: 497-513. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部