摘要
任意将边长为1的正m边形及其内部每点染n种颜色Y1,Y2,…,Yn中的一种颜色.分别记染色为Y1,Y2,…,Yn的点组成的集合为Sm 1,Sm 2,…,Sm n,这样的剖分称为Sm的n-染色剖分,并以T(m,n)表示.以dm i表示集合Sm i(i=1,2,…,n)的直径.记D(m,n)=m ax{dm 1,dm 2,…,dm n}及θ(m,n)=in fT(m,n){D(m,n)}.证明了θ(6,2)=132,θ(6,3)=32,θ(6,4)=3-3.最后提出了猜想和问题.
Let Sm be a regular polygon that has a nuit side length. Dye every point in sides or inside of Sm one of color Y1, Y2,…,Yn. Denote by Sm1, Sm2 ,…,Smn respectively indicate points that dye the same color. This is called the n-color division of Sm and denote by as T(m,n). Define dmi as the diameter of Smi(i = 1,2,…,n). Let D(m,n) = max{dm1,dm2,…,dmn} and 8(m,n) = 3 inf T(m ,n) {D(m,n)}. This paper prove that θ(6,3) = 3/2 and θ(6,4) = 3 - √3. In addition, We pose one open problem and one conjecture.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第14期163-167,共5页
Mathematics in Practice and Theory
基金
南通大学自然科学研究课题
南通大学博士科研启动基金