摘要
设S是欧氏空间Rm中由有限个点A1,A2,…,An组成的集合.d(Ai,Aj)表示点Ai和Aj之间的距离.令σ(S)=∑1≤i<j≤nd(Ai,Aj),d(S)=1≤mi≠inj≤n{d(Ai,Aj)},μ(m,n)=σd((SS))(S Rm,|S|=n),infμ(m,n)=minσ(S)d(S)S Rm,|S|=n.这里通过区域控制、求边界极值等分析方法证明:当平面五点为凸形顶点时必有μ(2,5)>9+2 3.此外还提出几个猜想.
Suppose S is a set consisting of finite number of points A1 ,A2 ,… ,An in Euclidean Space R^m . Defined(Ai ,Aj) to be the distance between points Ai and Aj. And Letσ(S)=1Σ1≤i≤j≤nd(Ai,Aj),d(S)=1min 1≤i≠j≤n{d(Ai,Aj)},μ(m,n)=σ(S)/d(S)(S belong to R^m,|S|=n),infμ(m,n)=min{σ(S)/d(S)|S belong to R^m,| S|=n} We use several methods including regional control and boundary extreme to prove that, if five points in plain is vertex of a convex pentagon,μ(2,5) 〉 9 + 2√3. Some other guesses are given then.
出处
《合肥学院学报(自然科学版)》
2006年第2期9-11,18,共4页
Journal of Hefei University :Natural Sciences
基金
安徽省教育厅自然科学基金项目(2005KJ220)资助
关键词
场站设置
离散几何
边界极值
区域控制
setting sites
discrete geometry
boundary extremum
regional control