期刊文献+

应用支持向量机实现转子故障的模式分类 被引量:2

Application of SVM in classification of mechanical faults
下载PDF
导出
摘要 分析了故障检测在机械系统中的重要性,指出应用支持向量机的优点以及它在机械故障检测中的应用。支持向量机是机器学习理论里新的成员,给出了支持向量机的数学概念和定义,将支持向量机引用到机械故障模式的分类中,提出了使用该理论的一般方法。结合着旋转机械的常见故障,应用实验台进行了故障的分类研究。利用旋转机械的频域特征训练支持向量机,并对真实数据进行了分析。从分析结果讨论了改进故障分类效果的手段,指出了支持向量机的应用前景。
作者 韦抒
出处 《制造业自动化》 北大核心 2009年第7期82-85,共4页 Manufacturing Automation
  • 相关文献

参考文献8

  • 1徐启华,师军.基于支持向量机的航空发动机故障诊断[J].航空动力学报,2005,20(2):298-302. 被引量:54
  • 2Hsu C W,Lin C J.A comparison of methods for multiclass support vector machines.IEEE Transactions on Neural Networks.2002,13(2):415-425. 被引量:1
  • 3王亮申,朱玉才,陈少华,侯杰,于京诺,苏子林,欧宗瑛.利用SVM进行车型识别[J].计算机工程与设计,2005,26(9):2453-2454. 被引量:5
  • 4JC Platt.Fast Training of support vector machines using sequential minimal optimization.In Scholkopf B.et al(ed.),Advances in Kernel Methods-Support Vector Learning,Cambridge,MA,MIT Press,1999,185-208. 被引量:1
  • 5Vapnik V.An overview of statistical learning theory.IEEE Transactions on Neural Networks,1999,10(5):988-999. 被引量:1
  • 6Colin.C.Algorithmic Approaches to Training Support Vector Machines:A survey.Proceeding of ESANN2000.Bel-gium:D-Facto Publications,2000.27-35. 被引量:1
  • 7Platt J C,Cfisfianini N,Shawe-Taylor J.Large Margin DAGs for Multi-class Classification:MIT Press,2000.547-553. 被引量:1
  • 8B.Samanta,K.R.Al-Balushi,S.A.AL-Araimi.Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection Engineering.Applications of Artificial Intelligence 2003:16:657-665. 被引量:1

二级参考文献17

  • 1Simon Haykin.Neural Networks:A Comprehensive Foundation,(Second Edition)[M].Beijing:China Machine Press,2004. 被引量:1
  • 2Chiang Leo H,Kotanchek Mark E,Kordon Arthur K.Fault Diagnosis Based on Fisher Discriminant Analysis and Support Vector Machines[J].Computers & Chemical Engineering,2004,28(8):1389~1401. 被引量:1
  • 3Samanta B,Al-Balushi K R,Al-Araimi S A.Artificial Neural Networks and Support Vector Machines with Genetic Algorithm for Bearing Fault Detection[J].Engineering Applications of Artificial Intelligence,2003,16(7):657~665. 被引量:1
  • 4Jack L B,Nandi A K.Support Vector Machines for Detection and Characterization of Rolling Element Bearing Faults[J].Journal of Mechanical Engineering Science,2001,215(9):1065~1074. 被引量:1
  • 5Vapnik V, Lerner A. Pattern recognition using generalized portrait [J]. Automation and Remote Control, 1963, 24(6): 774-780 被引量:1
  • 6Victor L. Brailovsky, Ofir Barzily, Rabin Shahave. On global, local, mixed and neighborhood kernels for support vector machines [J]. Pattern recognition Letters, 1999, 20:1183-1190. 被引量:1
  • 7Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995, 20: 273-297. 被引量:1
  • 8Platt J C. Fast training of SVMs using sequential minimal optimization[A]. Scholkopf B, Burges C J C, Smola A J, et al. Advances in Kernel Methods-Support Vector Learning[C]. Cambridge, MA: MIT Press, 1998.185-208. 被引量:1
  • 9Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[C]. New York: Proceedings of 1997IEEE Workshop on Neutral Networks for Signal Proceeding,1997:276-285. 被引量:1
  • 10王亮申.[D].大连:大连理工大学,2003. 被引量:1

共引文献57

同被引文献9

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部