期刊文献+

不平衡最小二乘支持向量机 被引量:4

Unbalanced Least Squares Support Vector Machines
下载PDF
导出
摘要 针对标准的最小二乘支持向量机(LSSVM)没有考虑样本分布不平衡的问题提出一种称为不平衡最小二乘支持向量机的算法。首先用标准的最小二乘支持向量机对原始数据进行初步训练,产生一个分离超平面的法向量。然后把高维样本投影到该法向量上得到一维数据.最后由该一维数据的标准差以及样本数量差异所提供的信息,给出两类数据惩罚因子比例,再用标准的最小二乘支持向量机进行第二次训练,对分离超平面进行调整。该方法克服传统方法只考虑数量的不平衡的不足,将原有样本集中具有的分类信息充分提取出来,提高了最小二乘支持向量机的泛化能力。实验结果表明,所提方法可以有效提高不平衡数据的分类性能。 For the problem of unbalanced data classification which was not discussed in the standard Least Squares Support Vector Machines (LSSVM), an algorithm was proposed, namely unbalanced least squares support vector machines (ULSSVM). Firstly, the original samples were trained preliminarily by using standard LSSVM and a normal vector of the separation hyperplane was obtained. Secondly, one-dimensional data was generated by projecting the high dimensional data onto the normal vector Finally, by using the information provided by the standard deviation of the one-dimensional data and the difference of two-class sample sizes, the proportion of the two- class penalty factors was determinated. Thus separation hyperplane in standard LSSVM was balanced through the second training. It overcomes disadvantages of traditional designing methods which only consider the imbalance of samples size, extracts the enough classification information of samples and improves the generalization ability of LSSVM. Experiment results show that the method can effectively enhance the classification performance on imbalanced data sets.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第14期4324-4327,共4页 Journal of System Simulation
基金 国家自然科学基金(60674108)
关键词 不平衡数据 最小二乘支持向量机 投影 unbalanced data least squares support vector machines projection
  • 相关文献

参考文献11

  • 1Vapnik V. The Nature of Statistical Learning Theory [M]. New York, USA: Springer, 1995. 被引量:1
  • 2张浩然,韩正之,李昌刚.基于支持向量机的非线性系统辨识[J].系统仿真学报,2003,15(1):119-121. 被引量:59
  • 3张炤,张素,章琛曦,陈亚珠.基于支持向量机的概率密度估计方法[J].系统仿真学报,2005,17(10):2355-2357. 被引量:24
  • 4Platt J. Fast training of support vector machines using sequential minimal optimization [C]//Scholkopf B, Burges C J C, Smola A J, editors, Advances in Kernel Methods Support Vector Learning. Cambridge, MA, USA: MIT Press, 1999: 185-208. 被引量:1
  • 5Suykcns J A K, Vandewalle J. Least Square Support Vector Machine Classifiers [J]. Neural Processing Letters (S1573-773X), 1999, 9(3): 293-300. 被引量:1
  • 6Japkowicz N, Stephen S. The Class imbalanced Problem: A Systematic Study [J]. Intelligent Data Analysis (S1571-4128), 2002, 6(5): 429-449. 被引量:1
  • 7Ricardo Barandela, Rosa M V, J SS, et al. The Imbalanced Training Sample Problem: Under or over Sampling? [C]//SSPR&SPR, LNCS. Berlin, Germany:. Springer-Verlag, 2004, 3138: 418-4262004, 5: 1253-1286. 被引量:1
  • 8Weiss G M. Mining with Rarity- Problems and Solutions: A Unifying Framework [J]. SIGKDD Explorations (S1931-0145), 2004, 6(1): 7-19. 被引量:1
  • 9Chew H G; Crisp D J, Bogner R E, et al. Target Detection in Radar Imagery Using Support Vector Machines with Training Size Biasing [EB/OL]. (2001-01-01). [2007-7-18]. http://users.on.net/-hgchew/SVM/ChewCrisp Bogner-Lim-ICARCV2000.pdf. 被引量:1
  • 10肖健华,吴今培.样本数目不对称时的SVM模型[J].计算机科学,2003,30(2):165-167. 被引量:24

二级参考文献6

  • 1Vapnik V, Mukherjee S. Support Vector Method for Multivariate Density Estimation [M]. Advances in Neural Information Processing Systems, pp 659-665, MIT Press. 2000. 被引量:1
  • 2Weston, J. Gammerman, A. Stitson, M.O. Vapnick, V. Vovk, V.Watkins, C. Support Vector Density Estimation [M]. Advances in Kernel Methods, MIT Press. 1999. 被引量:1
  • 3Fukunaga, K. and Hayes, R.R. The Reduced Parzen Classifier [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989, 11(4): 423-425. 被引量:1
  • 4VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 5王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999.. 被引量:40
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2278

共引文献100

同被引文献34

  • 1全勇,杨杰.Geodesic Distance for Support Vector Machines[J].自动化学报,2005,31(2):202-208. 被引量:4
  • 2盛昭瀚,柳炳祥.客户流失危机分析的决策树方法[J].管理科学学报,2005,8(2):20-25. 被引量:49
  • 3Chew H G, Crisp D, Bogner R E, et al. Target detection in radar imagery using support vector machines with training size biasing [ EB/ OL]. [2010 - 05 - 08 ]. http://www, eleceng, adelaide, edu. au/ personal/hgchew/svm. html. 被引量:1
  • 4Huang Kaizhu, Yang Haiqin, King I, et al. Machine learning : model- ing data locally and globally [M].杭州:浙江大学出版社,2008:29-68. 被引量:1
  • 5Tenenbaum J B, Silva V D, Langford J C. A golbal geometric frame- work for nonlinear dimensionality reduction [ J ]. Science, 2000,290:2319 -2323. 被引量:1
  • 6Ma B P, Yang F, Gao W, et al. The application of extended geodesic distance in head poses estimation [ C ]//Biometrics, the First International Conference on Biometrics (ICB) ,2006 : 192 - 198. 被引量:1
  • 7UCI machine learning repository [DB/OL]. [2010 -06 -07 ]. http ://archive. ics. uci. edu/ml/. 被引量:1
  • 8张新安,田澎.顾客满意与顾客忠诚之间关系的实证研究[J].管理科学学报,2007,10(4):62-72. 被引量:69
  • 9Reinartz W J,Kumar V. On the profitability of long-life customers in a noncontractual setting:An empirical investigation and implications for marketing[J].Journal of Marketing,2000,(04):17-35. 被引量:1
  • 10Hopmann J,Thede A. Applicability of customer churn forecasts in a non-contractual setting[J].Mathematics and Statistics,2005.330-337. 被引量:1

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部