期刊文献+

不平衡数据的分离超平面偏置的调整方法

Adjustment Method of the Offset of Separating Hyperplane for Imbalanced Data
下载PDF
导出
摘要 为了平衡和减少两类不平衡数据的错分率,针对两类不平衡数据的分离超平面的偏置提出一种调整方法。该方法以两类错分概率相等为准则,使用特征提取方法,把高维样本投影到标准支持向量机的法向量上得到一维数据,当一维投影数据服从正态分布时,可由它所提供的信息,对标准的支持向量机中分离超平面的偏置进行调整。随机模拟试验表明了所调整的超平面不仅平衡了错分率而且减少了错分率。与现有方法相比,该方法具有较高的精度。 An adjustment method of the offset of separating hyperplane for binary-classification imbalanced data is proposed in order to balance and decrease the separating error ratio of the two classes of imbalanced data. The method is based on the rule of equal error probability. One-dimensional data set is obtained by using feature extraction that highly dimensional samples are projected on normal vector of the standard SVM. The adjustment of the offset of the separating hyperplane in standard SVM can be performed based on the information provided by the one-dimensional projective data set with normal distribution. The result of the random simulation experiment shows that separating error ratio is balanced and decreased. Compared with the existing methods, the method is of higher accuracy.
作者 王金艳
出处 《洛阳师范学院学报》 2008年第2期42-44,共3页 Journal of Luoyang Normal University
关键词 不平衡数据 正态分布 投影 支持向量机 偏置 imbalanced data projection normal distribution support vector machines (SVM) offset
  • 相关文献

参考文献9

  • 1Nello Cristianini John Shawe -Taylor. An Introduction to Support Vector Machines and Other Kernel Based Learning Methods [ M ]. Cambridge : Cambridge University Press, 2000. 被引量:1
  • 2Japkowicz Net al. The Class imbalance Problem: A Systematic Study [ J ]. Intelligent Data Analysis, 2002, 6(5) : 429 -449. 被引量:1
  • 3Chew H - Get al. Dnal nu - support Vector Machine with Error Rate and Training Size Biasing [ A ]. Proceedings of the 25th IEEE International Conference Acoustics, Speech, andSignal [ C ]. Piscataway : USA, IEEE, 2001. 1269 - 1272. 被引量:1
  • 4Chawla, N Vet al. Synthetic Minority Over- Sampling Technique [ J ]. Journal of Artificial Intelligence Research, 2002, 16(3): 321 -357. 被引量:1
  • 5Ling, C et al, Data Mining for Direct Marketing Problems and Solutions [ A ]. In Proceedings of the Fourth International Conference on knowledge Discovery and Data Ming[ C ]. New York : AAAI Press, 1998:73 - 79. 被引量:1
  • 6Miroslav Kubat et al. Addressing the Curse of Imbalanced Datasets[ A]. One- sided Sampling Proceedings of the Fourteenth International Conference on Machine Learning [C]. Nashville: Tennessee , 1997: 178- 186. 被引量:1
  • 7Rehan A et al. Applying Support Vector Machines to Imbalanced Datasets [ A ]. Fifteenth European Conference on Machines Learning [ C ]. Berlin: Springer - Verlag. 2004 : 39 - 50. 被引量:1
  • 8郑恩辉,李平,宋执环.不平衡数据知识挖掘:类分布对支持向量机分类的影响[J].信息与控制,2005,34(6):703-708. 被引量:17
  • 9张尧庭,方开泰.多元分析引论[M].北京:科学出版社,1997. 被引量:1

二级参考文献13

  • 1Vapnik V N. The Nature of Statistical Learning Theory [ M ].New York, USA: Springer-Verlag, 1999. 被引量:1
  • 2Burges C. A tutorial on support vector machines from pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 121 -167. 被引量:1
  • 3Ge M, Zhang G C, Xu Y S, et al. Fault diagnosis using support vector machine with an application in sheet metal stamping operations [J]. Mechanical Systems and Signal Processing, 2004, 18(1): 143-159. 被引量:1
  • 4Chang R F, Wu W J, Woo K M. Support vector machines for diagnosis of breast tumors on US images [ J ]. Academic Radiology, 2003, 10(2): 189-197. 被引量:1
  • 5Kim H C, Pang S N, Je H M, et al. Constructing support vector machine ensemble [ J]. Pattern Recognition, 2003, 36 ( 12 ) :2757-2767. 被引量:1
  • 6Weiss G M, Provost F. The Effect of Class Distribution on Classifier Learning: an Empirical Study [ R]. New Jersey: Rutgers University, 2001. 被引量:1
  • 7Japkowicz N, Stephen S. The class imbalance problem : a systematic study [ J ]. Intelligent Data Analysis, 2002, 6 ( 5 ) : 429-449. 被引量:1
  • 8Domingos P. Metacost: a general method for making classifiers cost sensitive [ A]. Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining [ C ]. San Diego,CA: ACM Press, 1999. 155-164. 被引量:1
  • 9Drummond C, Holte R. Exploiting the cost (in) sensitivity of decision tree splitting criteria [ A]. Proceedings of the 17th International Conference on Machine Learning [ C ]. USA: Morgan Kanfraann, 2000. 239 -246. 被引量:1
  • 10Chew H-G, Crisp D J, Bogtler R E, et al. Target detection in radar imagery using support vector machine8 with training size biasing [A]. Proceedings of the Sixth International Conference on Control, Automation, Robotics and Vision [ M/CD]. Singapore :2000. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部