期刊文献+

具有初始缺陷的扁球面网壳的混沌运动与控制

Chaotic motion and its control of shallow reticulated spherical shells considering initial imperfect
下载PDF
导出
摘要 在圆形三向网架非线性动力学基本方程的基础上,用拟壳法给出了圆底扁球面三向网壳的大挠度方程和非线性动力学基本方程。在固定边界条件下,引入了异于等厚度壳的无量纲量,对基本方程和边界条件进行无量纲化。并将扁球面网壳的大挠度解当作扁球面网壳的初始缺陷,通过Galerkin作用得到了一个含二次、三次的非线性动力学方程。通过求Melnikov函数,给出了具有初始缺陷的扁球面网壳系统可能发生混沌运动的临界条件。并通过数字仿真绘出了平面相图,证实了混沌运动的存在并且可以通过改变参数来抑制系统混沌运动的发生。同时也发现了考虑初始缺陷的扁球面系统固有频率增大了,从而发生混沌运动的临界载荷值减小了。 On the basis of the nonlinear dynamical fendamented equations, the big deflection equation and the nonlinear dynamic equation of the shallow spherical shells were established by the method of quasi-shells. Dimensionless quantity of shells with uniform thickness was introduced and used to simplify the fendamental equations and the boundary conditions under the fixed boundary conditions. The static big deflection was taken as the initial imperfect assumption of the system and a nonlinear dynamic differential equation including the second and third order terms was derived by the method of Galerkin. The critical conditions of the chaos motion were given by solving the Melnikov function. Using the digital simulation the plane phase diagram was plotted and the existence of the chaotic motion is approved. It is also approved that the chaos could be controlled by changing parameters. It is found that the first natural frequency of shallow reticulated spherical shells considering initial imperfect becomes higher and the critical value of chaotic motion becomes smaller.
作者 栗蕾 黄义
出处 《振动与冲击》 EI CSCD 北大核心 2009年第6期6-7,41,共3页 Journal of Vibration and Shock
基金 国家自然科学基金项目(59978038)资助
关键词 初始缺陷 拟壳法 混沌 扁球面网壳 非线性 稳定性 initial imperfect quasi-shells chaos motion shallow reticulated spherical shells non-linear stability
  • 相关文献

参考文献8

二级参考文献33

  • 1王新志,梁从兴,丁雪兴,韩明君,赵永刚.单层扁锥面网壳非线性动力稳定性分析[J].工程力学,2005,22(S1):172-176. 被引量:5
  • 2孙建恒,夏亨熹.网壳结构非线性动力稳定分析[J].空间结构,1994(1):25-31. 被引量:27
  • 3王新志,梁从兴,栗蕾,韩明君,丁雪兴.扁锥面单层网壳的非线性动力学特性[J].动力学与控制学报,2004,2(3):14-17. 被引量:9
  • 4周岱.斜拉网格结构的非线性静力、动力和地震响应分析[学位论文].杭州:浙江大学,1997.. 被引量:1
  • 5符华·鲍络金著 林砚田等译.弹性体系的动力稳定性[M].北京:高等教育出版社,1960.. 被引量:1
  • 6GOLDHIRSCH I, SULEM P L, ORSZAG S A. Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method [J]. Physica, 1987, 27D:311 -337. 被引量:1
  • 7GILAT Rivka, ABOUDI Jacob. The Lyapunov exponents as a quantitative criterion for the dynamic buckling of composite plates [J]. International Journal of Solids and Structures, 2002, 39:467 -481. 被引量:1
  • 8BRISEGHELLA L, MAJORANA C E, PELLEGRINO C.Dynamic stability of elastic structures: a finite element approach[J]. Computers and Structures, 1998, 69:11 -25. 被引量:1
  • 9MWAFY A M, ELNAFHAI A S. Static pushover venus dynamic collapse analysis of RC buildings[ J]. Engineering Structures, 2001,23:407-424. 被引量:1
  • 10BUDIANSKY B, BOTH R S. Axisymmetric dynamic buckling of clamped shallow spherical shells [A]. Collected Papers on Instability of Shell Structures[C], NASA TND-1510, 1962. 被引量:1

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部