摘要
设φ是从多圆柱D^m到多圆柱D^n或从多圆柱D^m到单位球B_n的全纯映射,X是一无穷维复Banach空间.本文研究了X-值Hardy空间与Bergman空间之间的复合算子,给出了向量值复合算子C_φ有界性的完全刻画.
Let φ be a holomorphic mapping from the polydisk D^m into the polydisk D^n, or from the polydisk D^m into the unit ball Bn, and X an infinite dimensional complex Banach space. In this paper, we study the action of the associated composition operator Cφ between vector-valued Hardy and Bergman spaces defined on D^n or Bn. Some sufficient and necessary conditions for such composition operators to be bounded are obtained.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2009年第4期701-710,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10571044
10671147)