摘要
设X,Y是复数域C上的Hallsdorff局部凸线性拓扑空间,ΩC.讨论了向量值全纯函数各种定义的等价性,主要结果有定理1设X是序列完备的,f:Ω→X是弱全纯的,则f:Ω→X_β是强全纯的,从而f:Ω→X是强全纯的.定理2f:→X是强全纯的当且仅当它是局部全纯的。定理3设X是可数桶空间,则A:Ω→L_b(X,Y)是强全纯的当且仅当对每个x∈X,映射λ→A(λ)_x是强全纯的。推论1设X是可数桶空间,f:Ω→·是弱全纯的,则f:Ω→是强全纯的。
Let X and Y be Hausdorff locally convex linear topotogical spaces in complex field C and The equivalence of various definitions is studied for vector-valued holomorphic functions. The mainresults are :Theorem 1 Let X be sequentially complete and f: Ω→X weakly holomoaphic. Then f: Ω→X is strong holomorphic , so is f : Ω→X.Theorem. 2 f: Ω→X is strong holomorphic if and only if it is locally holomorphic.Theorem 3 Let X be numberably barrelled. Then A: Ω→L(X,Y)is strong holomorphic ifand only if the mapping λ→A(λ)x is strong holomorphic for all x ∈ X.Corollary 1 Let X be numberably barrelled and f: Ω→X weakly holomorphic. Then f:Ω→X_β is strong holomorphic.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1995年第2期111-115,共5页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
拓扑空间
向量值
等价性
全纯函数
weakly holomorphic
strong holomorphic , locally holomorphlc
sequentially complete
numberably bairelled spaces