期刊文献+

基于人工神经网络的田间秸秆覆盖率检测系统 被引量:19

Measuring System for Residue Cover Rate in Field Based on BP Neural Network
下载PDF
导出
摘要 以VC++为工具,田间实拍图像为研究对象,在分析田间秸秆和土壤纹理特征差别的基础上,设计了BP神经网络秸秆覆盖率检测系统。该系统采用了神经网络与纹理特征相结合的方法提取秸秆,并以纹理特征熵值为标准建立了网络输入层学习样本选取准则。人工模拟和田间试验表明,设计的BP神经网络秸秆覆盖率检测系统对田间秸秆的识别率达90%以上,秸秆覆盖率计算误差可控制在5%以内;与传统的拉绳法相比,检测效率提高50~120倍。 According to the analyses of the texture differences between straw and soil, a new BP neural network measuring system for residue cover rate is designed. By taking the filed photos as the research objectives, this system was developed through VC + + programming tools. Straws were detected by combining the texture features and BP neural network. Selection standard of learning samples for input nodes was constructed based on the entropy in the system. Artificial simulation and field testing indicated that the new measuring system could detect over 90 % of the straws in the field and control the counting error of residue cover rate under 5 %. Compared with the traditional manual measuring, the measuring efficiency in the new system could be improved by 50--120 times.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2009年第6期58-62,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 "十一五"国家科技支撑计划资助项目(2006BAD28B04)
关键词 保护性耕作 秸秆覆盖率 BP神经网络 纹理特征 检测 Conservation tillage, Residue cover rate, BP neural network, Texture feature, Measurement
  • 相关文献

参考文献12

  • 1刘立晶..一年两熟地区全程保护性耕作体系试验与效应研究[D].中国农业大学,2004:
  • 2Gee Ch, Bossu J, Jones G, et al. Crop/weed discrimination in perspective agronomic images[J]. Computers and Electronics in Agriculture, 2008, 60( 1 ) : 49 - 59. 被引量:1
  • 3Wang N, Zhang N, Wei J, et al. A real-time, embedded, weed-detection system for use in wheat fields[J]. Biosystems Engineering, 2007, 98 (3) : 276 N 285. 被引量:1
  • 4相阿荣,王一鸣.利用色度法识别杂草和土壤背景物[J].中国农业大学学报,2000,5(4):98-100. 被引量:14
  • 5李世卫,李洪文.基于计算机视觉的田间秸秆覆盖率计算[J].农机化研究,2009,31(1):20-22. 被引量:5
  • 6Walker R F, Jaekeay P T, Longstaf I D. Recent developments in the use of the co-occurrence matrix for texture recognition [C]//Proc. of 13th Internation Conference on Digital Image Processing, Greece, 1997. 被引量:1
  • 7王新成.高级图象处理技术[M].北京:中国科学技术出版社,2001. 被引量:2
  • 8Conners R W, Harlow C A. A theoretical comparison of texture algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(3 ) : 204 - 222. 被引量:1
  • 9高隽编著..人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003:209.
  • 10蒋宗礼.人工神经导论[M].北京:高等教育出版社,2001. 被引量:2

二级参考文献40

共引文献136

同被引文献170

引证文献19

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部