摘要
To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis, two categories of control strategies are used to dynamically correct and compensate the transient state steering responses and vehicle behaviors. Simulator tests including subjective evaluations and virtual field tests are both conducted to make comprehensive investigations on the series of control logics. The subjective evaluations demonstrate that the SBW vehicle with a specifically selected value of steering sensitivity tends to be more desirable for driving than a conventional one in which a fixed steering ratio exists. The virtual field tests indicate that the control strategies for dynamical correction and compensation could effectively improve the handling per-formances of an SBW vehicle by reducing the work load of drivers, enhancing the track-holding performance, and improving steering response properties.
To improve the handling performance of a steer-by-wire (SBW) vehicle, a series of control logics are proposed. Firstly, an algorithm for enhancing the maneuvering in steady-state cornering is presented. On this basis, two categories of control strategies are used to dynamically correct and compensate the transient state steering responses and vehicle behaviors. Simulator tests including subjective evaluations and virtual field tests are both conducted to make comprehensive investigations on the series of control logics. The subjective evaluations demonstrate that the SBW vehicle with a specifically selected value of steering sensitivity tends to be more desirable for driving than a conventional one in which a fixed steering ratio exists. The virtual field tests indicate that the control strategies for dynamical correction and compensation could effectively improve the handling per- formances of an SBW vehicle by reducing the work load of drivers, enhancingthe track-holding performance, and improving steering response properties.
基金
Project (Nos. 50475009 and 50775096) supported by the National Natural Science Foundation of China