期刊文献+

甲酚异构体在活性炭上的吸附与解吸平衡特性 被引量:2

Characteristics of Adsorption and Desorption Isotherm of Cresol Isomers on Activated Carbon
原文传递
导出
摘要 以邻、间、对甲酚为模拟废水,考察甲基的取代位置对吸附和解吸特性的影响,并以此评价活性炭吸附-生物再生工艺处理甲酚废水的可行性.平衡数据经Freundlich模型拟合后表明,活性炭(AC)对3种甲酚的吸附能力由大到小的顺序为:对甲酚>邻甲酚>间甲酚,与pKa呈正相关,与可溶性和氧化电极电位呈负相关;解吸能力由大到小的顺序为:邻甲酚>间甲酚>对甲酚,与沸点和黏度呈负相关.此外,对比吸附和解吸平衡曲线,发现吸附不可逆性是两曲线差异的重要原因,并结合数理统计的方法推导出理论不可逆吸附量的计算方法,得到AC对邻、间、对甲酚的不可逆吸附量Qi分别为27.9、28.5、33.4 mg/g. Simulated wastewater containing o-, m- and p-cresol was used respectively to study the effects of substituted position on adsorption and desorption and the feasibility of activated carbon adsorption-bioregeneration treatment. According to the isotherm, the adsorbability sequences in the order of p-cresol 〉 o-cresol 〉 m-cresol, which is positively correlated to pKa and negatively correlated to solubility and critical oxidation potential (COP); and the desorbability sequences in the order of o-cresol 〉 m-cresol 〉 p-cresol, which is negatively correlated to boiling point and viscosity. According to comparative analysis, irreversible adsorption is found to be the main reason for differences between adsorption and desorption isotherms. A mathematical statistics method was applied to estimate the amount of irreversible adsorption. The irreversible adsorption amounts of o, m, p-cresol are 27.9 mg/g, 28.5 mg/g and 33.4 mg/g, respectively.
出处 《环境科学》 EI CAS CSCD 北大核心 2009年第6期1744-1748,共5页 Environmental Science
关键词 甲酚 异构体 活性炭 吸附 解吸 cresol isomers activated carbon adsorption desorption
  • 相关文献

参考文献20

  • 1雷云,解庆林,李艳红.高盐度废水处理研究进展[J].环境科学与管理,2007,32(6):94-98. 被引量:63
  • 2杨晔,陆芳,潘志彦,林春绵.高盐度有机废水处理研究进展[J].中国沼气,2003,21(1):22-25. 被引量:32
  • 3Gu X H, Zhou J T, Zhang A L, et al. Feasibility study of the treatment of aniline hypersaline wastewater with a combined adsorption/bio-regeneration system [ J ]. Desalination, 2008, 227: 139-149. 被引量:1
  • 4张婷婷,张爱丽,周集体.活性炭吸附分离—生物再生法处理高盐苯胺废水[J].化工环保,2006,26(2):107-110. 被引量:25
  • 5Gu X H, Zhou J T, Zhang A L, et al. Treatment of hyper-saline wastewater loaded with phenol by the combination of adsorption and an offline bio-regeneration system [ J ]. J Chem Technol Biotechnol, 2008, 83: 1034-1040. 被引量:1
  • 6Walker G M, Weatherley L R. A simplified predictive model for biologically activated carbon fixed beds[ J]. Process Biochem, 1997, 32: 327-335. 被引量:1
  • 7Jonge R J D, Breure A M, Andel J G V. Bioregeneration of powdered activated carbon (PAC) loaded with aromatic compounds[J]. Water Res, 1996, 30: 875-882. 被引量:1
  • 8Schultz J R, Keinath T M. Powdered activated carbon treatment process mechanisms[J]. J Water Pollut C, 1984, 56: 143-151. 被引量:1
  • 9Speitel Jr G E, Lu C J, Turakhia M, et al. Biodegradation of trace concentrations of substituted phenols in granular activated carbon columns[J]. Environ Sci Technol, 1989, 23: 66-74. 被引量:1
  • 10Olmstead K P, Weber W J. Interactions between microorganisms and activated carbon in water and waste treatment operations [ J]. Chem Eng Commun, 1991, 108: 113-125. 被引量:1

二级参考文献32

共引文献113

同被引文献50

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部