期刊文献+

基于小波子带能量加权的人脸识别方法 被引量:1

Face Recognition Based on Wavelet Weighted Sub-band Energy
下载PDF
导出
摘要 针对人脸识别中小波变换后信息利用不充分和权系数选择困难的缺点,提出一种基于小波子带能量加权的人脸识别算法.首先应用二维离散小波变换(2D-DWT)对图像进行二层小波分解,然后将得到的第2层4个子带进行加权组合,并给出一种基于小波子带能量权系数求解法,无需进行人工实验选取.在此基础上,采用PCA+LDA方法进行特征提取,并在ORL人脸库中进行实验,与传统的算法相比有较快的识别速度和较高的识别率. To tackle the problems with insufficient use of information and hardship of selecting the weights posterior to Wavelet decomposition, a new face recognition method is proposed based on wavelet weighted sub-band energy. The work starts with face images decomposed using the two-level wavelet decomposition, followed by combining the four sub-bands of the second level with a right weight, which is solved by sub-bands energy based on wavelet coefficients independent of artificial selection experiments. The feature extracting method of PCA+LDA is adopted on the basis of the stated mechanism. Experiment using ORL face databases is conducted with results showing that the proposed approach is superior to the traditional methods in terms of the speed and recognition rate.
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2009年第2期207-211,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(10571095)
关键词 人脸识别 小波变换 线性判别分析 主成分分析 face recognition wavelet transform linear discriminant analysis principal component analysis
  • 相关文献

参考文献5

二级参考文献57

共引文献46

同被引文献14

  • 1周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 2刘秀丽,彭复员.基于小波变换的加权特征脸识别算法[J].计算机应用研究,2007,24(10):163-165. 被引量:9
  • 3Moghaddam B, Pentland A. Face Recognition: From Theory to Applications [ M ]. Berlin : Springer Verlag, 1998. 被引量:1
  • 4Li B, Liu Y. When eigenfaces are combined with wavelets [ J ]. Knowledge-Based Systems, 2002,15 ( 5 ) : 343-347. 被引量:1
  • 5Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108. 被引量:1
  • 6M Turk A P. Eigenfaces for recognition[ J]. Journal of Cognitive Neuroscience, 1991,3( 1 ) :71-86. 被引量:1
  • 7Yang M. Kernel eigenfaces vs. Kernel fisherfaces: face recognition using kernel methods [ C ]//Fifth IEEE International Conference on Automatic Face and Gesture Recognition. IEEE,2002:215-220. 被引量:1
  • 8Gottumukkal R, Asari V. An improved face recognition technique based on modular PCA approach [ J ]. Pattern Recognition Letters, 2004,25 (4) : 429- 436. 被引量:1
  • 9J Y, D Z, AF F, et al. Two-dimensional PCA:a new approach to appearance-based face representation and recognition [ J ]. IEEE Trans Pattern Anal Mach Intell, 2004,26 ( 1 ) : 131-137. 被引量:1
  • 10翟俊海,翟梦尧,王华超.基于小波变换和2DPCA的人脸识别[J].河北大学学报(自然科学版),2010,30(5):574-579. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部