期刊文献+

基于小波变换和2DPCA的人脸识别 被引量:4

Face Recognition Based on Wavelet Transforms and 2DPCA
下载PDF
导出
摘要 主成分分析(principal component analysis:PCA)已成功用于人脸识别,但基于主成分分析的人脸识别方法需要将图像数据向量化,而向量化后的图像样本维数非常大,计算代价非常高.二维主成分分析(2 di mension principal component analysis:2DPCA)直接处理图像数据,不需要向量化的过程,2DPCA降低了计算复杂度,但是2DPCA与PCA相比,需要存储更多的系数,即要占用更多的存储空间.本文提出了一种基于小波变换和2DPCA的人脸识别方法,可以克服上述缺点,实验结果证明了该方法的有效性. Principal component analysis(PCA) has been successfully applied to face recognition.However,image data must be converted into vector with high dimension for the PCA based face recognition methods,which requires too much time to extract the principal components.Two dimension principal component analysis(2DPCA) directly process image data without step of vectorization.Compared with PCA based methods,2DPCA based approaches can lower the computational complexity,but much more spaces are need to store the coefficients of 2DPCA.In this paper,based on wavelet transforms(WT) and 2DPCA,an approach of face recognition was proposed,which could overcome the drawback mentioned above.The experimental results confirmed the effectiveness of the proposed method.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2010年第5期574-579,共6页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(60773062) 河北省自然科学基金资助项目(F2010000323 F2008000635) 河北省应用基础研究重点项目(08963522D)
关键词 小波变换 人脸识别 主成分分析 特征脸 特征提取 wavelet transforms face recognition principal component analysis eigenfaces feature extraction
  • 相关文献

参考文献10

  • 1ZHAO W,CHELLAPPA R,PHILLIPS P J,et al.Face recognition:a literature survey[J].ACM Computing Surveys,2003,35(4):399-458. 被引量:1
  • 2TURK M,PENTLAND A.Eigen-faces for recognition[J].Journal of cognitive neuroscience,1991,3(1):71-86. 被引量:1
  • 3BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs.Fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720. 被引量:1
  • 4BARTLETT M S,MOVELLAN J R,SEJNOWSKI T J.Face recognition by independent component analysis[J].IEEE Transactions on Neural Networks,2002,13(6):1450-1464. 被引量:1
  • 5WISKOTT L,FELLOUS J M,MALSBURG C V.Face recognition by elastic bunch graph matching[J].Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):775-779. 被引量:1
  • 6SAMARIA F,YOUNG S.HMM based architecture for face identification[J].Image Vision Computing,1994,12(8):537-583. 被引量:1
  • 7LAWRENCE S,GILES C L,TSOI A C,et al.Face recognition:A convolutional neural-network approach[J].IEEE Transactions on Neural Networks,1997,8(1):98-113. 被引量:1
  • 8YANG Jian,ZHANG D.Two-dimensional PCA:A new approach to appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137. 被引量:1
  • 9ZHANG Daoqiang,ZHOU Zhihua.(2D)2PCA:Two-directional two-dimensional PCA for efficient face representation and recognition[J].Neurocomputing,2005,69(1):224-231. 被引量:1
  • 10MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (1):674-693. 被引量:1

同被引文献52

  • 1周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 2陈振洲,李磊,姚正安.基于SVM的特征加权KNN算法[J].中山大学学报(自然科学版),2005,44(1):17-20. 被引量:51
  • 3孙鑫,刘兵,刘本永.基于分块PCA的人脸识别[J].计算机工程与应用,2005,41(27):80-82. 被引量:14
  • 4刘秀丽,彭复员.基于小波变换的加权特征脸识别算法[J].计算机应用研究,2007,24(10):163-165. 被引量:9
  • 5Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces[J]. IEEE Transaction on Pattern Analysis and Mechine Intelligence, 1990, 12(1): 103-108. 被引量:1
  • 6Turk M, Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. 被引量:1
  • 7LU Guifu, ZOU Jian, WANG Yong. Incremental complete LDA for face recognition[J]. Pattern Recognition, 2012, 45(7): 2510-2521. 被引量:1
  • 8Zhao W, Chellappa R, Phillips E et al. Face recognition: A literature survey[J]. Association for Computing Machinery Computing Surveys, 2003, 35(4): 399-458. 被引量:1
  • 9Mandal T. A new approach to face recognition using curvelet transformation[D]. Canada: University of Windsor. Department of Electrical and Computer Engineering, 2008: 30-62. 被引量:1
  • 10Belhumeour P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces: Using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. 被引量:1

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部