期刊文献+

基于FPGA伪随机序列发生器设计 被引量:8

Design of pseudo-random sequence generator based on FPGA
下载PDF
导出
摘要 伪随机序列广泛应用于密码学、通信、雷达、导航等多个领域,本文提出了一种基于FPGA的伪随机序列产生方法,应用移位寄存器理论从序列的本原多项式出发,获得产生该序列的移位寄存器反馈逻辑式,结合FPGA芯片结构特点,在序列算法实现中采用元件例化语句,算法运用VHDL语言编程,以Altera的QuartusⅡ软件为开发平台,给出了序列的仿真波形。序列的统计特性分析表明:该方法产生的序列符合m序列的伪随机特性,验证了算法的正确性。 Pseudo-random sequence is widely used in cryptography, communications, radar, navigation and many other fields,This paper discusses realization method of pseudo-random sequence by using shift register theory based on FPGA,it is key that relation of both m sequence primitive polynomial and feedback polynomial of m sequence shift register is found by theoretical analysis. Combining with cyclone series FPGA chip EP1C12-240PQFP structural characteristics and using components Example statement in Quartus Ⅱ software development platform, algorithm is implemented based on VHDL programming, simulation waveform of the sequence is given. The analysis of Sequence statistical characteristics shows that statistical characteristics of this sequence accords with pseudo-random performance of m sequence and so verify the correctness of the algorithm.
作者 段颖妮
出处 《电子测量技术》 2009年第5期169-172,共4页 Electronic Measurement Technology
基金 安徽省自然科学基金(No.050420203)资助项目 安徽省教育厅自然科学基金((No.KJ2004064)资助项目
关键词 伪随机序列 M序列 移位寄存器理论 VHDL语言 pseudo-random sequence msequence shift register theory VHDL programming
  • 相关文献

参考文献12

二级参考文献25

  • 1吴继娟,孙媛媛,刘桂艳.基于BIST的FPGA逻辑单元测试方法[J].哈尔滨工业大学学报,2004,36(8):1074-1076. 被引量:5
  • 2张海峰,段颖妮,吕虹.全状态伪随机序列发生器的实现[J].电子器件,2006,29(1):176-178. 被引量:6
  • 3Berlekamp E R. Algebraic Coding Theory. New York: McGraw-Hill, 1968. 被引量:1
  • 4Massey J L. Shift-Register Synthesis and BCH Decoding. IEEE Transactions on Information Theory, 1969, 15(1): 122-127. 被引量:1
  • 5Ding C, Xiao G, Shan W. The Stability Theory of Stream Ciphers. Berlin: Springer-Verlag, 1991. 被引量:1
  • 6Meier W, Stafflebach O. The self-shrinking generator. In: Advances in Cryptology EUROCRYPT'94. Berlin: Springer-Verlag, 1995. 205-214. 被引量:1
  • 7Simon R B. The linear complexity of the self-shrinking generator. IEEE Trans Inform Theory, 1991,45(6): 2073-2077. 被引量:1
  • 8Mihaljevi- M J. A Faster Cryptanalysis of the self-shrinking generator. In: Pieprzyk J, Seberry J, eds. Advances in Cryptology-ACISP'96. Berlin: Springer-Verlag, 1996. 182-189. 被引量:1
  • 9Zenner E, Krause M, Lucks S. Improved cryptanalysis of the self-shrinking generator. In: Information Security and Privacy-ACISP'01. 2001. 被引量:1
  • 10肖国镇,编码理论,1993年,188页 被引量:1

共引文献29

同被引文献68

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部