期刊文献+

奇异超线性方程周期边值问题多重正解的存在性

Existence of Multiplicity of Positive Solutions to Singular Superlinear Equations with Periodic Boundary Value Problems
下载PDF
导出
摘要 研究具有奇异超线性周期边值问题多重正解的存在性,利用非线性Leray-Schauder抉择定理和Krasnoselskii锥不动点定理,证明了在一定条件下,且非线性项具有奇异和超线性时,此问题至少存在两个正解. This paper deals with the multiplicity of positive solutions to singular superlinear equations with periodic boundary value problems. It is proved that such a problem has at least two positive solutions under our reasonable conditions when the nonlinear term possesses singularity and super-linearity. The proof relies on a nonlinear alternative of Leray-Schauder theorem and Krasnoselskii on fixed point theorem in cones.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第3期487-491,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10571021)
关键词 周期边值问题 奇异超线性方程 周期解 Leray-Schauder抉择定理 Krasnoselskii锥不动点定理 periodic boundary value problem singular superlinear equation periodic solution Learay- Schauder alternative theorem Krasnoselskii fixed point theorem in cones
  • 相关文献

参考文献9

  • 1Deimling K.Nonlinear Functional Analysis[M].New York:Springer-Verlag,1995. 被引量:1
  • 2JIANG Da-qing,Xu X J,O'Regan D,et al.Multiple Positive Solutions to Semipositone Dirichlet Boundary Value Problems with Singular Dependent Nonlinearities[J].Fasciculi Mathematici,2004,34:24-37. 被引量:1
  • 3Lan K,Webb J R L.Positive Solution of Semilinear Differential Equation with Singularities[J].J Differential Equations,1998,148(2):407-421. 被引量:1
  • 4Torres P J.Existence of One-signed Periodic Solutions of Some Second-order Differential Equations via a Krasnoselskii Fixed Point Theorem[J].J Differential Equations,2003,190(2):643-662. 被引量:1
  • 5JIANG Da-qing.On the Existene of Positive Solutions to Sencond Order Periodic BVPs[J].Acta Mathematica Scientia,1998,18(Suppl):31-35. 被引量:1
  • 6DONG Yu-jun.A Neumann Problem at Resonance with the Nonlinearity Restricted in One Direction[J].Nonlinear Analysis,2002,51(5):739-747. 被引量:1
  • 7高海音,李晓月,林晓宁,蒋达清.二阶奇异非线性微分方程周期边值问题解的存在性和多重性[J].吉林大学学报(理学版),2005,43(4):411-416. 被引量:9
  • 8万阿英,蒋达清.奇异超线性二阶周期边值问题的正解[J].吉林大学自然科学学报,2001(2):25-27. 被引量:10
  • 9郭大钧,孙经先,刘兆理著..非线性常微分方程泛函方法[M].济南:山东科学技术出版社,1995:247.

二级参考文献12

  • 1Wang Junyu,Tohoku Math J,1998年,50卷,203页 被引量:1
  • 2Agarwal R P, O'Regan D. Nonlinear Superlinear Singular and Nonsingular Second Order Boundary Value Problems [J]. Journal of Differential Equations, 1998, 143: 60-95. 被引量:1
  • 3Agarwal R P, O'Regan D. Twin Solutions to Singular Dirichlet Problems [J]. J Math Anal Appl, 1999, 240: 433-445. 被引量:1
  • 4Agarwal R P, O'Regan D. Twin Solutions to Singular Boundary Value Problems [J]. Proc Amer Math Soc, 2000, 128(7): 2085-2094. 被引量:1
  • 5Agarwal R P, O'Regan D. Existence Theory for Nolinear Ordinary Differential Equations [M]. Dordrecht: Kluwer, 1997. 被引量:1
  • 6JIANG Da-qing. Multiple Positive Solutions to Singular Boundary Value Problems for Superlinear Higher-order ODEs [J]. Computers and Mathematics with Applications, 2000, 40: 249-259. 被引量:1
  • 7XU Xiao-jie, JIANG Da-qing. Twin Positive Solutions to Singular Boundary Value Problems of Second Order Differential Systems [J]. Indian Journal of Pure and Applied Mathematics, 2003, 34: 85-99. 被引量:1
  • 8JIANG Da-qing. On the Existene of Positive Solutions to Second Order Periodic BVPs [J]. Acta Mathematica Scientia, 1998, 18: 31-35. 被引量:1
  • 9WANG Jun-yu, JIANG Da-qing. A Singular Nonlinear Second Order Periodic Boundary Value Problem [J]. Tohoku Math J, 1998, 50: 203-210. 被引量:1
  • 10Krasnosel'skii M A. Positive Solutions of Operator Equations [M]. Netherland: Noordhoff Groningen, 1964. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部