期刊文献+

利用BP神经网络实现监控图像盲复原 被引量:5

Blind Restoration of Monitoring Image Based on BP Neural Network
下载PDF
导出
摘要 运用大量的真实图像与退化图像数据样本训练BP神经网络,然后再用训练好的网络进行实际的图像复原,方法可以实现真正的盲复原。但是,由于很难解决如何采集训练素材的问题,一直以来得不到实际的应用。针对监控图像应用的特点,通过设计实验,在原始拍摄场地对已有清晰图片进行拍摄,得到的退化图像经配准后和原始清晰图像共同组成训练图像对,解决了训练网络的材料的来源问题。实验表明,复原图像在视觉上和定量分析上都获得了良好的效果。 By using numbers of real images and degraded images for neural network training, and then using the trained network for image restoration, real blind rehabilitation can be realized. But it's difficult to resolve the proplem of acquiring training materials, so there has been no practical application. In this paper, according to the characteristics of monitoring image, a new experiment is designed. Images of prepared photos are taken in the original shooting venue and then used to train the neural network. Thus, the problem of lacking training materials is solved. Experiments show that this method has a satisfactory outcome both in visual impression and quantitative analysis.
出处 《计算机仿真》 CSCD 北大核心 2009年第5期223-226,共4页 Computer Simulation
关键词 图像复原 神经网络 非线性最小平方问题 Image restoration Neural network Nonlinear least square problem
  • 相关文献

参考文献5

二级参考文献68

  • 1李九生,鲍振武,金杰.半导体激光器的噪声特性神经网络仿真[J].光子学报,2005,34(2):195-198. 被引量:10
  • 2李代林,王向朝,刘英明.基于人工神经网络的大量程光纤实时距离干涉测量仪[J].光子学报,2005,34(6):865-868. 被引量:3
  • 3[1]朱宝礼,周云彪,等.刑事图像技术[M].北京:中国人民公安大学出版社,2002.1087~1158. 被引量:4
  • 4Jordi Sole, Anisse Taleb, Christian Jutten. Parametric Approach to Blind Deconvolution of Nonlinear Channels[A]. In:ESANN'2000-European Symposium on Artificial Neural Networks[C], Bruges, Belgium, 2000 : 26 - 28. 被引量:1
  • 5Haritopoulos Michel, Yin Hujun, Allinson M. Image denoising using self-organizing map-based nonlinear independent component analysis[J]. Neural Networks,2002,15(8-9):1085-1098. 被引量:1
  • 6Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I: Theory and realization [J].Signal Processing, 2003,83 (5) : 941 - 955. 被引量:1
  • 7Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I : applications [J]. Signal Processing, 2003,83(5) : 957-971. 被引量:1
  • 8Krell Gerald, Herzog Andreas, Michaelis Bernd. An artificial nervous network for real-time image restoration[A]. In:IEEE Instrumentation and Measurement Technology Conference[C],Brussels, Belgium, 1996. 被引量:1
  • 9Lagendijk R L, Tekalp A M, Biemond J. Maximum likelihood image and blur identification: A unifying approaeh[J]. Optical Engineering, 1990,29(5) :422-435. 被引量:1
  • 10Reeves S, Mersereau R. Blur identification by the method of generalized cross-validation [J]. IEEE Transactions on Image Processing, 1992,1(3) : 301 - 311. 被引量:1

共引文献68

同被引文献43

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部