期刊文献+

Si_mC_n(m+n≤7)团簇的密度泛函研究 被引量:11

Density functional theory study of Si_mC_n(m+n≤7) clusters
原文传递
导出
摘要 使用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对SimCn(m+n≤7)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的平均结合能(Eb),二阶能量差分(Δ2E)和能隙(Eg)等进行了理论研究.结果表明,随着原子个数的增加,SiC二元团簇的结构由线性转变为平面,再转变为三维立体结构,原子数小于5时,除Si5和Si4C外其他所有的团簇都是平面结构;随着C原子增加,SimCn(m+n≤7)团簇的平均单点能不断增加,说明富C簇要比富Si稳定,对Sin团簇掺杂C原子可以提高团簇的稳定性;Cn,SiCn和Si2Cn团簇表现出明显的"奇-偶"振荡和"幻数"效应,Si2C,Si3C,Si5C,SiC2,Si3C2,Si4C2和SiC4团簇比其他团簇更稳定. Possible geometrical structures and relative stability of Sin Cn (m + n ≤ 7) clusters are studied by using the hybrid density functional theory (B3LYP) with 6-31G *basis sets in this article. For the most stable isomers of SimCn (m + n ≤7) clusters, the binding energy per atom (Eb), second difference in energy (△2 E) and HOMO-LUMO gaps (Eg) et al. are analyzed. The calculated results show that: with increasing of the number of atoms the structure of SiC binary clusters transform linear into planar, and then into a three-dimensional structure. When the atomic number is less than 5, all clusters have planer structure except for Si5 and Si4C. With the increase of C atom, the average binding energy of SimCn (m + n ≤7) clusters increases, which means that clusters of "rich C" are more stable than clusters of "rich Si", and Sin clusters with C doping can increase the stability. Cn, SiCn and Si2 Cn clusters show clearly "odd-even" oscillation and the "magic number" effect, and Si2 C, Si3 C, Si5 C, SiC2 , Si3 C2 , Si4 C2 and SiC4 clusters are more stable than other clusters.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第5期3104-3111,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10674114)资助的课题~~
关键词 SimCn(m+n≤7)团簇 密度泛函理论 结构与性质 Sim Cn (m + n ≤ 7) clusters, density functional theory, structure and properties
  • 相关文献

参考文献23

二级参考文献17

  • 1Bullot, J.; Schmidt, M. P. Phys. Star. Sol. 1987, 143, 345-352. 被引量:1
  • 2Nahano, S.; Kishi, Y.; Ohnishi, M. Mater. Res. Soc. Syrup. Proc. 1985, 49, 275-286. 被引量:1
  • 3Yamamoto, H.; Asaoka, H. Appl. Sur. Sci. 2001, 169-170, 305-309. 被引量:1
  • 4Froudakis, G.; Zdetsis, A.; Mühlhaiuser, M.; Engels, B.; Peyerimhoff, S. D. J. Chem. Phys. 1994, 101, 6790-6799. 被引量:1
  • 5Nakajima, A.; Taguwa, T.; Nakao, K.; Gomei, M.; Kishi, R.; Iwata, S.; Kaya K. J. Chem. Phys. 1995, 103, 2050-2057. 被引量:1
  • 6Gordon, V. D.; Nathan, E. S.; Apponi, A. J.; McCarthy, M. C.; Thaddeus, E; Botschwina, P. J. Chem. Phys. 2000, 113, 5311-5320. 被引量:1
  • 7Ding, X. D.; Wang, S. L.; Rittby, C. M. L.; Graham, W. R. M. J. Phys. Chem. A 2,000, 104, 3712-3717. 被引量:1
  • 8Ding, X. D.; Wang, S. L.; Rittby, C. M. L,; Graham, W. R. M. J. Chem. Phys. 1999, 110, 11214-11220. 被引量:1
  • 9Raghavachari, K.; Binkley, J. S. J. Chem. Phys. 1987, 87, 2191-2199. 被引量:1
  • 10Withey, P. A.; Shen, L. N.; Graham, W. R. M. J. Chem. Phys. 1991, 95,820-832. 被引量:1

共引文献19

同被引文献71

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部