期刊文献+

基于Vague集的含洞不规则Vague区域关系 被引量:15

Region Relations of the Irregular Vague Regions with Holes Based on Vague Sets
下载PDF
导出
摘要 模糊区域的空间信息表示和区域关系处理在空间数据库、地理信息系统和人工智能等领域具有重要的意义.引入Vague集的概念和理论对含洞不规则Vague区域关系进行了系统的研究.基于Vague集给出了Vague区域、Vague洞和原子域等概念;将含洞不规则Vague区域分成原子域,研究了原子域间的空间关系;联合原子域关系,给出了含洞不规则Vague区域关系.研究成果可较好地处理含洞不规则Vague区域内的模糊点不确定的隶属信息和复杂的含洞不规则Vague区域的空间关系的表示和分析等问题. Representing spatial information of the vague regions and handling the vague region relations are of great significance in spatial database, geographical information systems and artificial intelligence, etc. In real world, the vague information about the vague regions with holes is abounded. Whether the fuzzy points belong to the vague region with holes and the degree of the membership are often uncertain. The existing research on the vague regions can not represent roundly the idiographic vague information of the given points in the vague regions with holes and can not represent the complex region relations of the irregular vague regions with holes. In order to tackle the problem, the region relations of the irregular vague regions with holes are discussed based on vague sets. The conceptions of the vague regions, the vague holes and the atomic-regions are given based on the vague sets~ The irregular vague region with holes is divided into some atomic-regions and the spatial relations of the atomic-regions are studied systemically. Based on the spatial relations of the atomic-regions, the irregular vague region relations with holes could be presented. The result produced in this work can deal with the indeterminate membership information of the vague points in vague regions and the region relations of the irregular vague regions with holes.
作者 李松 郝忠孝
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第5期823-831,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60673136) 黑龙江省自然科学基金项目(F200601)~~
关键词 VAGUE集 Vague区域 Vague洞 Vague区域关系 区域划分 Vague sets Vague region Vague hole Vague region relation region partition
  • 相关文献

参考文献10

  • 1虞强源,刘大有,谢琦.空间区域拓扑关系分析方法综述[J].软件学报,2003,14(4):777-782. 被引量:29
  • 2Cohn A G, Gotts N M. The "egg yolk" representation of regions with indeterminate boundaries [C]//Proc of GISDATA Specialist Meeting on Geographical Objects with Undetermined. London: Tavlor & Francis, 1996: 171-187 被引量:1
  • 3Clementini E, Felice P D. Approximate topological relations [J]. International Journal of Approximate Reasoning, 1997, 16(2) : 173-204 被引量:1
  • 4Egenhofer M, Clementini E, Felice P D. Topological relations between regions with holes [J]. International Journal of Geographical Information Systems, 1994, 8 (2) : 129-144 被引量:1
  • 5Schneider M. Design and implementation of finite resolution crisp and fuzzy spatial objects [J]. Data & Knowledge Engineering, 2003, 44(1): 81-108 被引量:1
  • 6Schneider M. Vague Topological predicates for crisp regions through metric refinements [C] //Proc of the llth Int Symp on Spatial Data Handling. Berlin: Springer, 2004:149-162 被引量:1
  • 7虞强源,刘大有,王生生.模糊栅格区域的层次拓扑关系模型[J].计算机研究与发展,2005,42(7):1166-1172. 被引量:5
  • 8Dilo Arta, Roll A d B, Alfred S. A proposal for spatial relations between vague objects [C]//Proc of the Int Syrup on Spatial Data Quality. Hongkong: Hong Kong, Polytechnic University, 2005:50-59 被引量:1
  • 9Schockaert S, Cornelis C, Cock M De, et al. Fuzzy spatial relations between vague regions [C] //Proc of the 3rd IEEE Conf on Intelligent Systems. Berlin: Springer, 2006: 221- 226 被引量:1
  • 10Gau W L, Buehrer D J. Vague sets [J]. IEEE Trans on systems, Man and Cybernetics(Part B), 1993, 23(2): 610- 614 被引量:1

二级参考文献10

  • 1M.J. Egenhofer, J. Sharma. Topological relations between regions in R2 and Z2. In: D. Abel, B. C. Ooi. eds. Advances in Spatial Databases, the 3rd Int'l Symposium, SSD' 93, LNCS692. Berlin: Springer-Verlag, 1993. 316~336 被引量:1
  • 2S. Winter. Topological relations between discrete regions. In: M.J. Egenhofer, J. R. Herring, eds. Advances in Spatial Databases, 4th Int'l Symposium, SSD'95, LNCS 951. Berlin:Springer-Verlag, 1995. 310~328 被引量:1
  • 3S. Winter, A. U. Frank, Topology in raster and vector representation. GeoInformatica, 2000, 4(1): 35~65 被引量:1
  • 4E. Clementini, P. Di Felice. Approximate topological relations.International Journal of Approximate Reasoning, 1997, 16(2):173~ 204 被引量:1
  • 5Liu Yabin, Liu Dayou, Yu Qiangyuan, et al. The extended raster representation of topological relations between spatial objects. In: Proc. the 8th Youth Conf. Chinese Institute of Electronics. Hangzhou: Zhejiang University Press, 2002. 448-454 (in Chinese)(刘亚彬,刘大有,虞强源,等.空间对象间拓扑关系的扩展栅格表示.见:中国电子学会第八届青年学术年会论文集.杭州:浙江大学出版社,2002.448~454) 被引量:1
  • 6M. Schheider. Design and implementation of finite resolution crisp and fuzzy spatial objects. Data and Knowledge Engineering, 2003,44(1): 81~108 被引量:1
  • 7S. Winter, T. Bittner. Hierarchical topological reasoning with vague regions. In: W. Shi, M. F. Goodchild, P. F. Fisher,eds. Proc. Int'l Symposium on Spatial Data Quality. London:Taylor & Francis, 1999. 555~565 被引量:1
  • 8廖士中,石纯一.拓扑关系的闭球模型及复合表的推导[J].软件学报,1997,8(12):894-900. 被引量:12
  • 9刘文宝,邓敏.GIS图上地理区域空间不确定性的分析[J].遥感学报,2002,6(1):45-49. 被引量:24
  • 10虞强源,刘大有,谢琦.空间区域拓扑关系分析方法综述[J].软件学报,2003,14(4):777-782. 被引量:29

共引文献32

同被引文献164

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部