期刊文献+

RCC5与主方位关系结合的定性空间推理 被引量:6

Combing RCC5 with Cardinal Direction Relation for Qualitative Spatial Reasoning
下载PDF
导出
摘要 解决实际问题需要将多方面空间信息结合进行推理,仅考虑单方面空间信息是不够的.多方面空间信息结合推理已成为定性空间推理的一个研究热点.现有拓扑与方位结合推理工作主要集中在与基于最小外包矩形或单片方位模型的结合.方位信息描述是近似的,不适于精确推理;因此分别采用主方位模型和RCC5描述方位、拓扑信息.根据定义给出基本RCC5和主方位关系间的相互依赖及异质复合表;讨论了其上约束满足问题,得到一个路径相容算法,并分析了推理复性问题. It is inadequate considering only one aspect of spatial information in practical problems, where several aspects are usually involved together. Reasoning with multi-aspect spatial information has become the focus of qualitative spatial reasoning. Most previous works of combing topological and directional information center on the combination with MBR based direction model or single-tile directions, which are too approximate to do precise reasoning. Different from above, cardinal direction relations and RCC5 are introduced to represent directional and topological information. Investigate the mutual dependencies between basic relations of two formalisms, discuss the heterogeneous composition and give the detail composing rules. Then point out that only checking the consistency of topological and directional constraints before and after entailing by the interactive table will result the mistakes. Based on this, an improved constraint propagation algorithm is presented to enforce path consistency. And the computation complexities of checking the consistency of the hybrid constraints over various subsets of RCC5 and cardinal direction relations are analyzed at the end.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期279-285,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60496321 60373098 60573073 60603030) 国家"八六三"高技术研究发展计划基金项目(2003AA118020) 吉林省科技发展计划重大基金项目(20020303) 吉林省科技发展计划基金项目(20030523)
关键词 定性空间推理 RCC 主方位关系 异质复合 路径相容 约束满足问题 qualitative spatial reasoning RCC cardinal direction relations heterogeneous composition path-consistency constraint satisfaction problem
  • 相关文献

参考文献20

  • 1刘大有,胡鹤,王生生,谢琦.时空推理研究进展[J].软件学报,2004,15(8):1141-1149. 被引量:34
  • 2[2]D Randell,C Zhan,A Cohn.A spatial logic based on regions and connection,in principles of knowledge representation and reasoning.In:Proc of the 3rd Int'l Conference.San Mateo:Morgan Kaufmann,1992.165-176 被引量:1
  • 3[3]M J Egenhofer,R D Franzosa.Point-set topological spatial relations.International Journal of Geographical Information Science,1991,5(2):161-174 被引量:1
  • 4[4]S Zlatanova.3D Gis for urban development:[Ph D dissertation].Graz,Austria:Graz University of Technology,2000 被引量:1
  • 5[5]A U Frank.Qualitative spatial reasoning about cardinal directions.In:Proc of the 7th Austrian Conf on Artificial Intelligence.Baltimore:Morgan Kaufmann,1991.157-167 被引量:1
  • 6[6]C Freksa.Using orientation information for qualitative spatial reasoning.In:Theories and Methods of Spatio-Temporal Reasoning in Geographic Space,LNCS639,Berlin:Springer,1992.162-178 被引量:1
  • 7[7]R Goyal,M J Egenhofer.Cardinal directions between extended spatial objects.http://www.spatial.maine.edu/max/RJ36.html 被引量:1
  • 8[8]S Skiadopoulos,M Koubarakis.Composing cardinal direction relations.Artificial Intelligence,2004,152(2):143-171 被引量:1
  • 9[9]S Skiadopoulos,M Koubarakis.On the consistency of cardinal direction constraints.Artificial Intelligence,2005,163(1):91-135 被引量:1
  • 10[11]E Clementini,F Paolino,H Daniel.Qualitative representation of positional information.Artificial Intelligence,1997,95(2):317-356 被引量:1

二级参考文献49

  • 1Renz J. A spatial odyssey of the interval algebra: Directed intervals. In: Nebel B, ed. Proc. of the 17th Int'l Joint Conf. on AI. Seattle: Morgan Kaufmann, 2001. 51-56. 被引量:1
  • 2Sistla A, Clarke E. The complexity of propositional linear temporal logics. Journal of the Association for Computing Machinery, 1985,32(3):733-749. 被引量:1
  • 3Oliviero S. Spatial and Temporal Reasoning. Dordrecht: Kluwer Academic Publishers, 1997. 3-71. 被引量:1
  • 4Pani AK, Bhattacharjee GP. Temporal representation and reasoning in artificial intelligence: A review. Mathematical and Computer Modelling, 2001,34(1-2):55-80. 被引量:1
  • 5Cohn AG, Hazarika SM. Qualitative spatial representation and reasoning: An overview. Fundamental Informatics, 2001,46(1-2): 1-29. 被引量:1
  • 6Studer R, Benjamins V, Fensel D. Knowledge engineering: Principles and methods. Data Knowledge Engineering, 1998,25(1-2): 161-197. 被引量:1
  • 7McCarthy J, Hayes P. Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer B, Michie D, ed. Machine Intelligence. Edinburgh: Edinburgh University Press, 1969. 463-502. 被引量:1
  • 8Bruce B. A model for temporal references and its application in a question answering program. Artificial Intelligence, 1972,3(1-3): l-25. 被引量:1
  • 9Allen JF. Maintaining knowledge about temporal intervals. Communications of the ACM, 1983,26(11):832-834. 被引量:1
  • 10Ladkin PB, Maddux RD. The algebra of convex intervals. Technical Report, KES-U-87-2, Palo Alto: Krestel Institute, 1987. 1-5. 被引量:1

共引文献60

同被引文献75

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部