期刊文献+

基于支持向量机的pH中和过程辨识

Identification of pH neutralization process based on support vector machine
下载PDF
导出
摘要 针对pH中和过程具有强非线性、时变性的特点,提出一种基于支持向量机的pH中和过程模型辨识方法.该方法采用结构风险最小化准则,保证网络具有较强的推广特性,通过求解凸二次规划确保网络结构全局最优化自动生成.利用支持向量机建立辨识pH中和过程辨识模型.仿真结果表明模型辨识精度高,泛化性能好,模型有效且易于实现. Aimed at the strong non-linearity and time-varying properties in a pH neutralization process, its identification model was proposed on the basis of support vector machine. The model was based on structure risk minimization (SRM) principle and a stronger generalization ability of network could be promised. By solving a quadratic convex programming problem, a global optimization could be automatically generated. The identification model was established based on support vector machines and the simulation result of the model showed that the model obtained had high identification precision, good generalization performance, and was valid and easy to realized.
出处 《兰州理工大学学报》 CAS 北大核心 2009年第2期84-87,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(60572055)
关键词 PH 中和过程 支持向量机 模型 pH neutralization process support vector machines model
  • 相关文献

参考文献4

二级参考文献17

  • 1李柠 李少远 席裕庚.pH中和过程的多模型预测控制[A]..第二十届中国控制会议论文集[C].大连:大连理工大学出版社,2001.343-348. 被引量:2
  • 2VAPNIK V.The natural of statistical theory [M].New York:Springer -Verlag,1995. 被引量:1
  • 3NELLO C,JOHN S T.An introduction to support vector machines and other kernel-based learning methods [M].Cambridge:Cambridge University Press,2000. 被引量:1
  • 4HSU C W,LIN C J.A comparison of methods for multi 2 class support vector machines [J].IEEE Transactions on Neural Networks,2002,13(3):415-425. 被引量:1
  • 5WESTON J,WATKINS C.Multi-class support vector machines [R].London:University of London,1998. 被引量:1
  • 6VAPNIK V N.Statistical learning theory [M].New York:John Viley & Sons Inc,1998. 被引量:1
  • 7KRESSEL U.“Pairwise classification and support vector machines”,in advances in kernel methods -support vector learning [M].Cambridge:MIT Press,1999. 被引量:1
  • 8WU Chunhsin,HO Janming,LEE D T.Travel-time prediction with support vector regression [J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):276-281. 被引量:1
  • 9邓志东,李凌,张钹.具有模糊分割的动态神经网络控制[J].计算机学报,1999,22(9):936-941. 被引量:4
  • 10贾平,麻红昭,俞蒙槐.pH值的神经网络多步预测控制算法[J].科技通报,2000,16(1):31-36. 被引量:11

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部