摘要
环R是强可分的,如果对任意有限生成投射R-模A,B,A⊕A≌B⊕B,则A≌B.该文证明了置换环上的强可分性在亚直积下是不变量.作为应用,证明了R/(IJ)是强可分的当且仅当R/(I∩J)是强可分的.
A ring R is strongly separative provided that, for any finitely generated projective right R-modules A and B, A + A ≌ A + B → A ≌ B. The author proves, in this note, that strongly separativity over exchange rings is invariant under subdirect products. As an application, the author proves that R/ (I J) is strongly separative if and only if so does R/ (I ∩ J) for any ideals of an exchange ring.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2009年第2期378-382,共5页
Acta Mathematica Scientia
基金
杭州师范大学科研启动经费资助
关键词
置换环
强可分性
直积.
Exchange ring
Strong separativity
Direct product.