摘要
针对鱼病诊断中存在随机性、诊断信息的模糊性和信息获取的不完备性等不确定因素。首先给出模糊的鱼病诊断过程,由于该方法存在模糊诊断矩阵较难获取的缺点。利用粗糙集理论无需先验知识的优点,将粗糙集理论和模糊集结合用于鱼病的诊断中。鱼病的症状模糊集形成条件属性,疾病模糊集形成决策属性构成模糊信息表,给出了模糊信息表属性约简和鱼病诊断规则获取的算法步骤,最后以实例演示了鱼病诊断的规则获取过程。论文为鱼病的诊断提供了一种全新的方法。
Such uncertainties are addressed as randomness of fish diseases diagnosis,fuzziness of diagnostic information and incompleteness of information acquisition.A fuzzy process in diagnosing fish diseases is illustrated firstly,the challenge of which lay in obtaining the matrix.As rough set theory called for no priori knowledge,it is then employed in diagnosing fish diseases.The symptoms of fish diseases fuzzy sets form condition attribute and the decision attribute from disease fuzzy set make up a fuzzy information table.Fuzzy information table attribute reduction and algorithms steps of rule acquisition of fish diseases diagnosis are analyzed.An example is finally demonstrated about the diagnostic process of the rules acquisition of fish diseases so as to provide a new method in fish disease diaznosis.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第13期207-210,共4页
Computer Engineering and Applications
基金
浙江省科技厅重大科技专项(优先主题)社会发展项目(No.2008C13068)
浙江省教育厅科研项目(No.20070330)
关键词
粗糙集
模糊集
鱼病诊断
模糊信息表
包含度
模糊粗糙集
rough set
fuzzy set
fish disease diagnosis
fuzzy information table
inclusion degree
fuzzy rough set