期刊文献+

基于改进粒子群优化算法的矩形Packing问题 被引量:7

Rectangle-packing Problem Based on Modified Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对具有NP难度的矩形Packing问题,提出一种带变异算子的双种群粒子群算法,该算法将粒子群分为2个不同的子群,使种群在全局和局部都有较好的搜索能力。通过子群重组实现种群间的信息交换。同时在算法中引入变异算子,对产生的局部最优解的邻域进行搜索。实验结果表明,该算法是一种求解矩形Packing问题的高效实用的算法。 To solve the rectangle packing problem, one of the NP hard problems, a bi-group Particle Swarm Optimization(PSO) algorithm with mutation operator is presented, by searching the two sub-groups which are parallely performed, it can achieve a better location in both overall and local situations. Information is exchanged when sub-groups are reorganized. Meanwhile, mutation operator is adopted to search in the neighborhood of local optimal solution. The effectiveness of this algorithm is demonstrated for rectangle-packing problem through a number of typical computational experiments.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第7期186-188,共3页 Computer Engineering
关键词 PACKING问题 双群 粒子群 变异算子 Packing problem bi-group particle swarm mutation operator
  • 相关文献

参考文献7

  • 1Wu Yuliang, Huang Wenqi, Wong Chak-Kuen. An Effective Quasi-human Based Heuristic for Solving the Rectangle Packing Problem[J]. European Journal of Operational Research, 2002, 141 (2): 341-358. 被引量:1
  • 2Beasley J E. A Population Heuristic for Constrained Two- dimensional Non-guillotine Cutting[J]. European Journal of Operational Research, 2004, 156(3): 601-627. 被引量:1
  • 3Zhang Defu, Sheng Dachen, Liu Yanjuan. A Hybrid Heuristic Algorithms for the Rectangular Packing Problem[C]//Proc. of the 5th International Conference on Computational Science. [S. l.]: IEEE Press, 2005: 22-25. 被引量:1
  • 4康雁,黄文奇.求解圆形Packing问题的一个启发式算法[J].计算机研究与发展,2002,39(4):410-414. 被引量:10
  • 5Shi Yi, Eberhart R C. Empirical Study of Particle Swarm Optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE Press, 1999: 1945-1950. 被引量:1
  • 6王向军,向东,蒋涛,林春生,龚沈光,方兴.一种双种群进化规划算法[J].计算机学报,2006,29(5):835-840. 被引量:24
  • 7Hopper E, Turon B. An Empirical Investigation of Meta-heuristic and Heuristic Algorithm for a 2D Packing Problem[J]. European Journal of Operational Research, 2001, 128( 1): 34-57. 被引量:1

二级参考文献12

  • 1黄文奇 詹叔浩.求解Packing问题的拟物方法[J].应用数学学报,1979,(2):176-180. 被引量:21
  • 2Yao X,Liu Y..A new evolutionary system for evolving artificial neural networks.IEEE Transactions on Neural Networks,1997,8(3):694~713 被引量:1
  • 3Sebald A.V,Schlenzig J..Minimax design of neural net controllers for highly uncertain plants.IEEE Transactions on Neural Networks,1994,5(1):73~82 被引量:1
  • 4Bornholdt S,Graundenz D..General asymmetric neural networks and structure design by genetic algorithms.IEEE Transactions on Neural Networks,1992,5(5):327~334 被引量:1
  • 5Fogel D.B..Applying evolutionary programming to selected traveling salesman problem.Cybernetics and System,1993,24(1):27~36 被引量:1
  • 6Yao X,Liu Y,Lin G..Evolutionary programming made faster.IEEE Transactions on Evolutionary Computation,1999,3(2):82~102 被引量:1
  • 7Lee C,Yao X..Evolutionary programming using mutations based on Lévy probability distribution.IEEE Transactions on Evolutionary Computation,2004,8(1):1~13 被引量:1
  • 8Tongchim S,Yao X..Parallel evolutionary programming.In:Proceeding of the 2004 IEEE International Conference on Evolutionary Computation,2005,1:1362~1367 被引量:1
  • 9黄文奇,许如初.支持求解圆形packing问题的两个拟人策略[J].中国科学(E辑),1999,29(4):347-353. 被引量:40
  • 10郭崇慧,唐焕文.一种改进的进化规划算法及其收敛性[J].高等学校计算数学学报,2002,24(1):51-56. 被引量:28

共引文献32

同被引文献57

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部