摘要
能用初等积分法求解的微分方程毕竟是很少的一部分,绝大多数微分方程的解是不能用初等函数表示的。一些方程的解用毕卡逼近序列作出近似解,更一般是把解表成幂级数形式或弗罗本尼乌斯(F、G、Frobenius)级数,最重要的是要讨论级数的收敛性,根据解的级数研究解的性质。许多重要的特殊函数如贝塞尔函数,契比雪夫多项式,高斯超几何级数都是来源于二阶线性齐次方程的解。这些特殊函数给予物理、天文等以深刻的解释,而且这些函数还是纯数学重要的工具,是线性分析的重要内容。
出处
《玉溪师范学院学报》
1989年第4期53-57,47,共6页
Journal of Yuxi Normal University