摘要
为了实现食管、胃、结肠等宽裕环境内诊断与治疗,双半球胶囊机器人需要实现稳定的滚动行走。为了探究旋转磁场强度、旋转速度、阻尼等参数对胶囊滚动动态性能的影响,确定胶囊姿态角变化范围,结合旋转磁场随动效应建立了双半球胶囊拉格朗日滚动动力学模型,采用区间状态转移矩阵逼近算法求得状态转移矩阵,通过分析状态转移矩阵特征指数,确定了能够实现稳定滚动的临界和最优控制参数。提出了基于激光系统的胶囊滚动姿态检测方法,模型仿真与试验结果表明:在一定范围内,磁场强度的减小及磁场旋转角速度的增加通常有利于机器人滚动动态稳定性的增强,该动力学特性为控制胶囊实现肠道内稳定滚动控制策略提供了理论依据。
For diagnostic and therapeutic medical applications in some spacious spots of the gastrointestinal(GI) tract such as esophagus, stomach and colon and etc., the stable rolling locomotion of the dual hemisphere capsule robot should be required. To determine the response range of the posture angle by exploring the influence of the magnetic flux density, angular speed, damping coefficient on the rolling dynamic performance of the dual hemisphere capsule robot, the dynamic model of rolling locomotion is derived based on Lagrange equations and the follow-up effect of the magnetic field. The state transition matrix is further derived by the interval state transition matrix approximation algorithm. By analyzing the characteristic index of the state transition matrix, the critical and optimal control parameters for stable rolling locomotion are obtained. Finally, posture detection method for rolling locomotion of the robot based on laser system is proposed. The theoretical simulation and experimental results show that the decrease of the magnetic flux density and the increase of the angular velocity to some degree are usually beneficial to the enhancement of the dynamic stability of the robot, this dynamic characteristics provides a theoretical basis for stable rolling locomotion control of the robot inside the intestine.
作者
张永顺
纪璇
刘旭
刘冠喜
刘振虎
ZHANG Yongshun;JI Xuan;LIU Xu;LIU Guanxi;LIU Zhenhu(Key Laboratory for Precision&Non-traditional Machining of Ministry of Education,Dalian University of Technology,Dalian 116024)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第1期10-18,共9页
Journal of Mechanical Engineering
基金
国家自然科学基金资助项目(61773084,62173059)。
关键词
双半球胶囊机器人
滚动动力学模型
动态稳定性
临界控制参数
dual hemisphere capsule robot
rolling locomotion dynamic model
dynamic stability
critical control parameters