摘要
从线性变换出发,讨论了Walsh线性谱和循环谱及其逆变换,并证明了Bent函数的对偶性质;讨论了Chrestenson线性谱和循环谱及其逆变换;证明Chrestenson线性谱和Chrestenson循环谱的关系本质上是线性变换,并给出Chrestenson线性谱和循环谱相互线性表达式的一个新的简单证明.
Based on the dcfinition of linear transformations,the Walsh linear spectrum and cyclic spectrum and their inverse transformations are discussed.The dual property of Bent functions is proved.Chrestenson linear spectrum and cyclic spectrum and their inverse transformations are examined.It is proved that the relationship between Chrcstenson linear spectrum and Chrestenson cyclic spectrum is a linear transformation.Furthermore a simple proof of this linear transformation is given.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2007年第S1期325-327,共3页
Journal of University of Electronic Science and Technology of China