期刊文献+

精炼炉终点硫容量预报模型的研究

On Prediction Model of Final Sulfur Capacity of LF
下载PDF
导出
摘要 硫容量是衡量合成渣脱硫能力的关键参数,是如何选择渣系的重要依据。目前,国内外预测硫容量的模型主要以机理模型为主,但是由于许多参数无法测量,经常使得预测无法进行,或者预测值与实际值有较大误差。应用改进的LS-SVM对精炼过程的渣系终点硫容量进行预测,它克服了冶炼现场数据量小,参数难以准确测量等问题,仿真结果表明该方法可以大幅度提高预测的准确度。 The sulfur capacity is one of the key parameters which can measure the desulphurization ability of the slag system.It is an important basis for choosing the slag system.At present,the prediction models of the sulfur capacity mostly are mechanism models at home and aboard.But because some of the parameters of the mechanism models can not be measured,the prediction can not proceed,or the errors between the predicted values and the real values are too big.The improved LS-SVM is used to predict the final sulfur capacity of the slag system,it overcomes the problems of less data and the parameters can not be measured exactly.The result of the simulation shows that the improved LS-SVM can significantly improve the prediction accuracy.
出处 《控制工程》 CSCD 北大核心 2010年第S1期49-51,共3页 Control Engineering of China
基金 国家高新技术研究发展计划基金资助项目(2007AA041401 2007AA04Z194)
关键词 LS-SVM 硫容量 预报模型 LS-SVM sulfur capacity prediction model
  • 相关文献

参考文献10

二级参考文献35

  • 1Unal Camdali,Murat.Tun.Steady State Heat Transfer of Ladle Furnace During Steel Production Process[J].Journal of Iron and Steel Research International,2006,13(3):18-20. 被引量:19
  • 2Chengli Wang,Qing Lu,Shuhui Zhang,Fumin Li.Study on sulphide capacity of CaO-SiO_2-Al_2O_3-MgO-Fe_tO slags[J].Journal of University of Science and Technology Beijing,2006,13(3):213-217. 被引量:2
  • 3知水.炉外精炼[M].北京:北京大学出版社,1993.. 被引量:3
  • 4万真雅.-[J].钢铁,1993,28(4):19-19. 被引量:1
  • 5григорян BA 曲英(译).炼钢过程的物理化学计算[M].北京:冶金工业出版社,1993.38. 被引量:1
  • 6Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns [ J ]. Control Engineering Practice, 2005,13 (4) :499 - 508. 被引量:1
  • 7Breiman L. Bagging predictors [J J. Machine Learning, 1996,24(2) : 123 - 140. 被引量:1
  • 8Meir R, Ratsch G. An introduction to boosting and leveraging[M]. Mendelson S, Smola A J. Lecture Notes in Computer Science: Adavanced Lectures on Machine Lemming. New York: Springer-Verlag, 2003:118 183. 被引量:1
  • 9Polikar R, Udpa L, Udpa S S, et al. Learn + +: an incremental learning algorithm for supervised neural networks[J].IEEE Transactions on Systems, Man and Cybernetics Part C : Applications and Reviews, 2001,31 (4) :497 - 508. 被引量:1
  • 10Polikar R, Topalis A, Parikh D, et al. An ensemble based data fusion approach for early diagnosis of Alzheimer's disease[J].Information Fusion, 2008,9(1) :83 - 95. 被引量:1

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部