期刊文献+

非线性控制系统多步Runge-Kutta方法的IS稳定性 被引量:1

Input-to-state Stability of Multistep Runge-Kutta Methods for Nonlinear Control Systems
下载PDF
导出
摘要 控制系统在实际问题中有广泛应用,众多文献对系统本身及其数值方法的稳定性进行了深入研究。将概括面非常广泛的多步Runge-Kutta方法用于求解非线性控制系统,获得了方法IS稳定的条件,可视为多步Runge-Kutta方法关于非线性常微分方程的稳定性分析在非线性控制系统的进一步推广。 Control systems arise widely in practice.Stability of the systems and the numerical methods was investigated extensively.Multistep Runge-Kutta methods were adopted for solving nonlinear control systems.The conditions for the methods to be input-to-state stable were derived.The result could be regarded as extension of the stability analysis of multistep Runge-Kutta methods for nonlinear ordinary differential equations.
机构地区 湘潭大学数学系
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第6期1573-1574,1590,共3页 Journal of System Simulation
基金 国家自然科学基金 (10871164) 湖南省教育厅资助优秀青年项目(07B072) 湖南省自然科学基金项目 (08JJ6002)
关键词 非线性控制系统 多步RUNGE-KUTTA方法 数值解 IS稳定性 nonlinear control system multistep Runge-Kutta methods numerical solution input-to-state stability
  • 相关文献

参考文献10

  • 1Sontag E D, Wang Y. New characterizations of input-to-state stability [J]. IEEE Trans. Automat. Conlrol (S0018-9286), 1996, 41: 1283-1294. 被引量:1
  • 2Angeli D. Input-to-state stability of PD-controUed robotic systems [J]. Automatica (S0005-1098), 1999, 35: 1285-1290. 被引量:1
  • 3Kokotovic P, Arcak M. Constructive nonlinear control: a historical perspective [J]. Automatica (S0005-1098), 2001, 37: 637-662. 被引量:1
  • 4Jiang Z P, Wang Y. Input-to-state stability for discrete-time nonlinear systems [J]. Automafiea (S0005-1098), 2001, 37: 857-869. 被引量:1
  • 5Sontag E D, Wang Y. On characterizations of the input-to-state stability property [J]. Systems Control Letters (S0617-6911), 1995,24: 351-359. 被引量:1
  • 6Hu G D, Liu M Z. Input-to-state stability of Runge-Kuta methods for nonlinear control systems [J]. J. Comput. Appl. Math. (S0377-0427), 2007, 205: 633-639. 被引量:1
  • 7余越昕.非线性控制系统单支方法的IS稳定性[J].系统仿真学报,2008,20(1):19-20. 被引量:4
  • 8Li S F. Stability and B-convergence properties of multistep Runge- Kutta methods [J]. Math. Comput. (S0025-5718), 2000, 69: 1481-1504. 被引量:1
  • 9Li S F. Multistep Runge-Kutta methods with real eigenvalues and its parallel implementation [C]//Proc 5th CSIAM Conference. Beijing, China: Tsin~,hua University Publishing House. 1998. 被引量:1
  • 10Burrage K, Butcher J C. Non-linear stability of a general class of differential equation methods [J]. BIT (S0006-3835), 1980, 20: 185-203. 被引量:1

二级参考文献9

共引文献3

同被引文献10

  • 1Sontag E D. Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Con- trol, 1989, 34: 435-443. 被引量:1
  • 2Sontag E D, Wang Y. On characterizations of the input-to-state stability property. Systems Control Letters, 1995, 24: 351-359. 被引量:1
  • 3Sontag E D, Wang Y. New characterizations of input-to-state stability. IEEE Trans. Automat. Control, 1996, 41: 1283-1294. 被引量:1
  • 4Jiang Z P, Wang Y. Input-to-state stability for discrete-time nonlinear systems. Automatica, 2001, 37: 857-869. 被引量:1
  • 5Hu G D, Liu M Z. Input-to-state stability of Runge-Kutta methods for nonlinear control sys- tems. J. Comput. Appl. Math., 2007, 205: 633-639. 被引量:1
  • 6Li S F. Multistep Runge-Kutta methods with real eigenvalues and its parallel implementation In Proc. 5h CSIAM Conference, Beijing China: Tsinghua University Publishing House, 1998. 被引量:1
  • 7Huang C M and Chang Q S. Dissipativity of multistep Runge-Kutta methods for dynamical systems with delays. Mathematical and Computer Modelling, 2004, 40: 1285-1296. 被引量:1
  • 8Burrage K, Butcher J C. Non-linear stability of a general class of differential equation meth- ods. BIT, 1980, 20: 185-203. 被引量:1
  • 9余越昕.非线性控制系统单支方法的IS稳定性[J].系统仿真学报,2008,20(1):19-20. 被引量:4
  • 10田献珍,余越昕.非线性时滞控制系统Runge-Kutta方法的IS稳定性[J].广西工学院学报,2010,21(2):41-46. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部