摘要
控制系统在实际问题中有广泛应用,众多文献对系统本身及其数值方法的稳定性进行了深入研究。将概括面非常广泛的多步Runge-Kutta方法用于求解非线性控制系统,获得了方法IS稳定的条件,可视为多步Runge-Kutta方法关于非线性常微分方程的稳定性分析在非线性控制系统的进一步推广。
Control systems arise widely in practice.Stability of the systems and the numerical methods was investigated extensively.Multistep Runge-Kutta methods were adopted for solving nonlinear control systems.The conditions for the methods to be input-to-state stable were derived.The result could be regarded as extension of the stability analysis of multistep Runge-Kutta methods for nonlinear ordinary differential equations.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2009年第6期1573-1574,1590,共3页
Journal of System Simulation
基金
国家自然科学基金 (10871164)
湖南省教育厅资助优秀青年项目(07B072)
湖南省自然科学基金项目 (08JJ6002)