期刊文献+

非线性控制系统单支方法的IS稳定性 被引量:4

Input-to-state Stability of One-leg Methods for Nonlinear Control Systems
下载PDF
导出
摘要 控制系统在实际问题中有广泛应用,众多文献对系统本身及其数值方法的稳定性进行了深入研究。将单支方法用于求解非线性控制系统,获得了方法IS稳定的条件,可视为单支方法关于非线性常微分方程的稳定性分析在非线性控制系统的进一步推广。最后给出了一些常用的单支方法IS稳定的条件。 Control systems arise widely in practice. Stability of the systems and the numerical methods were investigated by many authors. One-leg method was adopted for solving nonlinear control systems. The conditions for the methods to be input-to-state stable were derived, which could be regard as extension of the stability analysis of one-leg methods for nonlinear ordinary differential equations. Some numerical methods that satisfied the conditions were given in the end.
作者 余越昕
机构地区 湘潭大学数学系
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第1期19-20,72,共3页 Journal of System Simulation
基金 国家自然科学基金资助项目(10271100 10571147) 湖南省教育厅资助科研项目(07B072)。
关键词 非线性控制系统 单支方法 数值解 IS稳定性 nonlinear control system one-leg methods numerical solution input-to-state stability
  • 相关文献

参考文献9

二级参考文献15

  • 1刘红波,李少远,贾磊.基于自整定和模糊自校正技术的改进Smith预估控制系统[J].系统仿真学报,2004,16(9):2086-2090. 被引量:16
  • 2田玉楚,符雪桐,吕勇哉,席裕庚,张钟俊.非线性控制和优化系统中的浑沌运动[J].控制与决策,1995,10(1):1-7. 被引量:15
  • 3夏德钤.自动控制原理[M].北京:机械工业出版社,1997.. 被引量:1
  • 4李光权.自动控制原理[M].北京:机械工业出版社,1992.. 被引量:1
  • 5R Tempo,Dabbence,Howard B.Probabilistic Robustness Analysis Explicit Bounds for the Minimum Number of Samples[C]// Proceedings of the 35th Conference on Decision and Control,Japan,1996. 被引量:1
  • 6Martin T Hagan,Demuth,Mark Beale.Neural network design[M].Beijing:China Machine Press,CITIC Publishing House,2002. 被引量:1
  • 7A Linnemann.Existence of controllers stabilizing the Reduced-order model and the plant[J].Automatica (S0005-1098),1988,24(5):719. 被引量:1
  • 8Zdenko KovaEiC,Stjepan Bogdan.Design and Stability of Self-organizing Fuzzy Control of High-order Systems[C]// Proceedings of the 1995 IEEE International Symposium on 27-29 Aug,1995:389-394. 被引量:1
  • 9Tornambe A.A decentralized controller for the robust stabilization of a class of MIMO dynamical systems[J].Journal of Dynamic Systems,Measurement,and Control (S0022-0434),1994,116(2):293-304. 被引量:1
  • 10Ray L,Stengel R.A Monte Carlo approach to the analysis of control system robustness[J].Automatica (S0005-1098),1993,29(1):229-236. 被引量:1

共引文献14

同被引文献26

  • 1Sontag E D, Wang Y. New characterizations of input-to-state stability [J]. IEEE Trans. Automat. Conlrol (S0018-9286), 1996, 41: 1283-1294. 被引量:1
  • 2Angeli D. Input-to-state stability of PD-controUed robotic systems [J]. Automatica (S0005-1098), 1999, 35: 1285-1290. 被引量:1
  • 3Kokotovic P, Arcak M. Constructive nonlinear control: a historical perspective [J]. Automatica (S0005-1098), 2001, 37: 637-662. 被引量:1
  • 4Jiang Z P, Wang Y. Input-to-state stability for discrete-time nonlinear systems [J]. Automafiea (S0005-1098), 2001, 37: 857-869. 被引量:1
  • 5Sontag E D, Wang Y. On characterizations of the input-to-state stability property [J]. Systems Control Letters (S0617-6911), 1995,24: 351-359. 被引量:1
  • 6Hu G D, Liu M Z. Input-to-state stability of Runge-Kuta methods for nonlinear control systems [J]. J. Comput. Appl. Math. (S0377-0427), 2007, 205: 633-639. 被引量:1
  • 7Li S F. Stability and B-convergence properties of multistep Runge- Kutta methods [J]. Math. Comput. (S0025-5718), 2000, 69: 1481-1504. 被引量:1
  • 8Li S F. Multistep Runge-Kutta methods with real eigenvalues and its parallel implementation [C]//Proc 5th CSIAM Conference. Beijing, China: Tsin~,hua University Publishing House. 1998. 被引量:1
  • 9Burrage K, Butcher J C. Non-linear stability of a general class of differential equation methods [J]. BIT (S0006-3835), 1980, 20: 185-203. 被引量:1
  • 10Dugard L,Veries E L.Stability and control of time delaysystems[M].New York:Springer-Verlag,1997. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部