期刊文献+

无线传感器网络中多基站定位的多目标蚁群算法 被引量:9

A Multi-objective Ant Algorithm for Multi-base Station Placement in Wireless Sensor Networks
下载PDF
导出
摘要 根据多目标进化算法思想,提出了无线传感器网络中多基站定位的多目标蚁群算法.该算法用一组蚂蚁并行搜索,用一个蚂蚁所在位置表示一个基站定位,多蚂蚁位置的组合表示多基站的定位.计算单基站和多基站定位的适应度,再根据这两个适应度值调整蚂蚁觅食路径上的信息素,蚂蚁沿着信息素强的方向搜索,不断逼近多目标优化的Parote解,从而获得全局优化的多基站定位解.实验结果表明,该算法求得的多基站定位位置能有效提高网络性能,且适用性强. The multi-base station placement in a sensor network affects the universality performance of net directly. The problem of base station placement is known to be NP-hard. A multi-objective ant algorithm was presented for multi-base station placement based on evolutionary multi-objective optimization. In this algorithm, a group of ants search for base station placement in net simultaneously. The position of one ant denotes one base station placement, the combination position of many ants denotes multi-base station placement. The fitness of one base station placement and the fitness of multi-base station placement are evaluated. The quantity of pheromone is adjusted based on these fitness. The ants search along the direction of strong pheromone and converge toward the Pareto optimal solutions. Thus the optimal multi-base station placement is obtained. The proposed algorithm was validated by several experiments. The results show that the approach is effective and efficient. And the applicability of this algorithm is strong.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第3期449-454,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60673102) 江苏省自然科学基金资助项目(BK2006218)
关键词 传感器 基站定位 多目标优化 蚂蚁算法 sensor base station placement multi-objective optimization ant algorithm
  • 相关文献

参考文献12

  • 1Suomela J. Computational complexity of relay placement in sensor networks[C]//Proc 32rd Conference on Current Trends in Theory and Practice of Computer Science. Berlin: Springer-Verlag. 2006:521-529. 被引量:1
  • 2Suomela J. Approximating relay placement in sensor networks[C]//Proc 3rd ACM International Workshop on Performance Evaluation of Wireless ad Hoc, Sensor and Ubiquitous Networks. New York: ACM Press, 2006 : 145-148. 被引量:1
  • 3Younis M, Bangad M, Akkaya K. Base station repositioning for optimized performance of sensor networks [C]//Proc Vehicular Technology Conference. Piscataway: IEEE Press, 2003: 2956-2960. 被引量:1
  • 4Capkun S, Hubax J P. Secure positioning in wireless networks[J]. IEEE Journal on Selected Area in Communications, 2006,24(2) :221-232. 被引量:1
  • 5Kim S, Ko J G, Yoon J, et al. Multiple-objective metric for placing multiple base stations in wireless sensor networks[C]//Proc 2rd International Symposium on Wireless Pervasive Computing. Piscataway: IEEE Press, 2007:627-631. 被引量:1
  • 6Deb K, Pratap A, Agrawal S, etal. A fast and elitist multi-objective genetic algorithm: NSGA-∏[J]. IEEE Transactions on Evolutionary Computation,IEEE Transactions on Evolutionary Computation,2002, 6(2):182-197. 被引量:1
  • 7Coello Coello C A. Twenty years of evolutionary multi-objective optimization: A historical view of the field[J]. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36. 被引量:1
  • 8Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm for multi-objective Optimization[C]//Giannakoglou K C, et al. Proc EUROGEN 2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Athens: National Technical University of Athens, 2001. 被引量:1
  • 9Knowles J D, Corne D W. Approximation the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000,8 : 149- 172. 被引量:1
  • 10Coello Coello C A. Handling multiple objectives with Particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004,8(3) :256-279. 被引量:1

同被引文献106

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部