期刊文献+

含有次凸位势的二阶Hamilton系统周期解 被引量:1

Periodic solutions of the second order Hamiltonian systems with subconvex potentials
下载PDF
导出
摘要 研究非自治的二阶Hamilton系统:±ü=▽F(t,u(t)),a.e.t∈[0,T],u(0)-u(T)=■(0)-■(T)=0的周期解.当位势函数是一个(λ,μ)次凸函数与一个次二次函数的和时,利用极小作用原理和鞍点定理得到了非平凡周期解存在的几个充分条件.更全面地讨论了含有(λ,μ)次凸位势的Hamilton系统的周期解,推广和补充了某些已知的结果. The non-autonomous second order Hamiltonian systems:±ü=△↓F(t,u(t)),a.e.t∈[0,T],u(0)-u(T)=u^·(0)-u^·(T)=0 have been studied.The problems with potentials being the sums of(λ,μ) subconvex functions and subquadratic functions are considered by the least action principle and the saddle point theorem.Some sufficient conditions for nontrivial periodic solutions are obtained.Periodic solutions of Hamiltonian systems with(λ,μ) subconvex potentials are discussed comprehensively.The results provide a generalization and complement for some known ones.
作者 孟青 张福保
机构地区 东南大学数学系
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期181-184,共4页 Journal of Southeast University:Natural Science Edition
关键词 周期解 非自治Hamilton系统 极小作用原理 鞍点定理 periodic solutions non-autonomous Hamiltonian systems the least action principle saddle point theorem
  • 相关文献

参考文献9

  • 1Mawhin J, Willem M. Critical point theory and Hamiltonian systems [ M]. New York: Springer-Verlag, 1989. 被引量:1
  • 2Tang C L. Periodic solutions of nonautonomous second order systems with 3,-quasisubadditive potential [J ]. Math Anal Appl, 1995,189 ( 3 ):671 - 675. 被引量:1
  • 3Tang C L. Periodic solutions for nonautonomous second order systems with sublinear nonlinearity[J ]. Proc Amer Math Soc, 1998,126( 11 ) : 3263 - 3270. 被引量:1
  • 4Wu X P, Tang C L. Periodic solution of a class of non- autonomous second order systems [ J ]. Math Anal Appl, 1999,236 ( 2 ) : 227 - 235. 被引量:1
  • 5Zhao F K, Wu X. Periodic solution for a class of non- autonomous second order systems [J ]. Math Anal Appl, 2004,296(2) : 422-434. 被引量:1
  • 6Yang R G. Periodic solutions of some non-autonomous second order Hamiltonian systems[J]. Nonlinear Anal, 2008,69(8) : 2333 -2338. 被引量:1
  • 7Ma J, Tang C L. Periodic solutions for some nonautonomous second-order systems I J ]. Math Anal Appl, 2002,275(2): 482-494. 被引量:1
  • 8Tang C L, Wu X P. Notes on periodic solutions of subquadratic second order systems [ J ]. Math Anal Appl, 2003,285( 1 ) : 8 - 16. 被引量:1
  • 9Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations [C]// CBMS Regional Conference Series in Mathematics. New York, 1986.7 - 12. 被引量:1

同被引文献6

  • 1Mawhin J, Willem M. Critical point theory and Hamihonian systems[M]. New York: SpringerVerl ag, 1989. 被引量:1
  • 2Tang Chunlei. Existence and multiplicity of periodic solutions for nonautonomous second order systems[ J]. Nonl Anal, 1998, 32 (3) : 299- 304. 被引量:1
  • 3Wu Xingping, Tang Chunlei. Periodic solutions of a class of nonautonomous second order systems[J]. J Math Anal Appl, 1999 (236) : 227- 235. 被引量:1
  • 4Tang Chunlei. Periodic solut ions of nonautonomous second order systems with sublinear nonlinearity[J]. Proc Amer Math Soc, 1998, 126 ( 11 ) : 3263-3270. 被引量:1
  • 5Tang Chunlei, Wu Xingping. Periodie solutions for second order systems with not uniformly coercive potential[J]. J Math Anal Appl, 2001 (259) : 386-397. 被引量:1
  • 6Tang C L, Wu X P. Notes on periodic solution s of subquadratic second order system[J]. Math Anal Appl, 2003, 285 ( 1 ) : 8-16. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部