摘要
考虑二阶差分方程泛函边值问题△^2u(k-1)=(Fu)(k),k∈[a+1,b-1]z,ω(u)=A,γ(△u)=B多个解的存在性,并获得一个严格单调递增解和一个严格单调递减解.其中a,b∈Z,满足b≥a+2,F为连续算子,ω,γ均为连续泛函.
In this paper, the existence of multiple solutions to functional boundary value problem for nonlinear difference equation
△^2u(k-1)=(Fu)(k),k∈[a+1,b-1]z,ω(u)=A,γ(△u)=B
is discussed. A strictly monotone increasing solution and a strictly monotone decreasing solution are obtained, where F is a continuous operator, ω, γ are both the continuous functionals.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2009年第1期75-85,共11页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
西北师范大学青年教师科研基金‘时间尺度上的动力方程特征值问题'(NWNU-QN-05-23)
关键词
二阶差分方程泛函边值问题
严格单调递增解
严格单调递减解
Borsuk定理
functional boundary value problem for second order difference equation
strictly monotone increasing solution
strictly monotone decreasing solution
Borsuk theorem