期刊文献+

一类二阶差分方程泛函边值问题的多解性 被引量:3

Multiple solutions to functional boundary value problem for second order difference equation
下载PDF
导出
摘要 考虑二阶差分方程泛函边值问题△^2u(k-1)=(Fu)(k),k∈[a+1,b-1]z,ω(u)=A,γ(△u)=B多个解的存在性,并获得一个严格单调递增解和一个严格单调递减解.其中a,b∈Z,满足b≥a+2,F为连续算子,ω,γ均为连续泛函. In this paper, the existence of multiple solutions to functional boundary value problem for nonlinear difference equation △^2u(k-1)=(Fu)(k),k∈[a+1,b-1]z,ω(u)=A,γ(△u)=B is discussed. A strictly monotone increasing solution and a strictly monotone decreasing solution are obtained, where F is a continuous operator, ω, γ are both the continuous functionals.
作者 高承华 罗华
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2009年第1期75-85,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 西北师范大学青年教师科研基金‘时间尺度上的动力方程特征值问题'(NWNU-QN-05-23)
关键词 二阶差分方程泛函边值问题 严格单调递增解 严格单调递减解 Borsuk定理 functional boundary value problem for second order difference equation strictly monotone increasing solution strictly monotone decreasing solution Borsuk theorem
  • 相关文献

参考文献9

  • 1Stanek S. Multiple solutions for some functional boundary value problems[J]. Nonlinear Analysis TMA, 1998, 32(3): 427-438. 被引量:1
  • 2Stanek S. Multiplicity results for functional boundary value problems[J]. Nonlinear Analysis TMA, 1997, 30(5): 261742628. 被引量:1
  • 3Stanek S. Singular nonlocal boundary value problems [J]. Nonlinear Analysis TMA, 2005, 63: 277-287. 被引量:1
  • 4Brykalov S A. A second-order nonlinear problem with two-point and integral boundary conditions[J]. Proc Georgian Acad Sci Math, 1993, 1(3): 273-279. 被引量:1
  • 5Ma Ruyun, Castaneda Nelson. Existence of solutions of boundary value problems for second order functional differential equations[J]. J Math Anal Appl, 2004, 292: 49-59. 被引量:1
  • 6Cabada A. Extremal solutions for the difference φ-Laplacian problem with nonlinear functional boundary conditions[J]. Comput Math Appl, 2001, 42: 593-601. 被引量:1
  • 7钟承奎,范先令,陈文源.非线性泛函分析引论(第2版)[M].兰州:兰州大学出版社,2004. 被引量:1
  • 8杨恩浩.若干有关欧阳不等式的非线性积分不等式和离散不等式[J].数学学报(中文版),1998,41(3):475-480. 被引量:16
  • 9马如云著..非线性常微分方程非局部问题[M].北京:科学出版社,2004:233.

二级参考文献1

  • 1Ouyang L,数学进展,1957年,3卷,4期,409页 被引量:1

共引文献15

同被引文献25

  • 1Agarwal R P,Bohner M,Li Wantong.Nonoscillation and Oscillation:Theory for Functional Differential Equations[M].New York:Marcel Dekker,2004. 被引量:1
  • 2Hilger S.Analysis on measure chains-a unified approach to continuous and discrete calculns[J].Results in Mathematics,1990,18:18-56. 被引量:1
  • 3Bohner M,Peterson A.Dynamic Equations on Time Scales,an Introduction with Applications[M].Boston:Birkhauser,2001. 被引量:1
  • 4Agarwal R P,Bohner M,O'Regan D,et al.Dynamic equations on time scales:a survey[J].Journal of Computational and Applied Mathematics,2002,141(1-2):1-26. 被引量:1
  • 5Sahiner Y.Oscillation of second order delay differential equations on time scales[J].Nonlinear Analysis,TMA,2005,63:e1073-e1080. 被引量:1
  • 6Agarwal R P,Bohner M,Saker S H.Oscillation of second order delay dynamic equations[J].Canadian Applied Mathematics Quarterly,2005,13(1):1-18. 被引量:1
  • 7Zhang Binggen,Deng Xinghua.Oscillation of delay differential equations on time scales[J].Computational Mathematics and Modeling,2002,36(11):1307-1318. 被引量:1
  • 8Zhang Binggen,Zhu Shanliang.Oscillation of second order nonlinear delay dynamic equations on time scales[J].Computers & Mathematics with Applications,2005,49(4):599-609. 被引量:1
  • 9HILGER S. Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Results Math, 1990, 18: 18-56. 被引量:1
  • 10BOHNER M, PETERSON A. Dynamic Equations on Time Scales, an Introduction with Applications[M]. Boston: Birkhauser, 2001. 被引量:1

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部