期刊文献+

基于模糊积分的客户满意度综合评价算法设计 被引量:1

Design of a General Algorithm for Comprehensive Evaluation of Customer's Satisfaction Based on Fuzzy Integral
下载PDF
导出
摘要 在制定综合评价指标体系时,很难使各指标完全独立,传统的评价方法显得无能为力.从由模糊数学发展起来的λ模糊测度与Choquet模糊积分入手,在充分分析的基础上给出了基于模糊积分的客户满意度综合评价通用算法,并借助JAVA语言进行了描述. When making a comprehensive evaluation system,it is difficult to make every index completely independent,so traditional evaluation methodsE1-43 will fail. Starting with the 2 fuzzy measure and the Choquet fuzzy integral arising from fuzzy mathematics, a general algorithm for comprehensive evaluation of customer's satisfaction is given here and described in JAVA.
作者 王继奎
出处 《甘肃科学学报》 2009年第1期101-104,共4页 Journal of Gansu Sciences
关键词 λ模糊测度 CHOQUET模糊积分 DFS算法 综合评价 λ fuzzy measure Choquet fuzzy integral DFS algorithm comprehensive evaluation
  • 相关文献

参考文献9

二级参考文献35

共引文献124

同被引文献27

  • 1吕文红,吴祈宗,郭银景.基于D-S证据理论的群决策专家意见集结方法[J].运筹与管理,2005,14(2):10-13. 被引量:14
  • 2张雪平,殷国富.基于层次灰色关联的产品绿色度评价研究[J].中国电机工程学报,2005,25(17):78-82. 被引量:42
  • 3胡良明,徐诚,方峻.CBR技术在枪械方案设计专家系统中的应用[J].系统仿真学报,2007,19(4):772-775. 被引量:18
  • 4THURSTON D L, CARNAHAN J V. Fuzzy ratings and utility analysis in preliminary design evaluation of multiple attributes [J]. Journal of Mechanical Design, 1992, 114(4): 648-658. 被引量:1
  • 5AYAG Z, OZDEMIR R G. A hybrid approach to concept selection through fuzzy analytic network process [J]. Computers and Industrial Engineering, 2009, 56(1) : 368 - 379. 被引量:1
  • 6ZHAI L Y, KHOO L P, ZHONG Z W. Design concept evaluation in product development using rough sets and grey relation analysis [J]. Expert Systems with Applications, 2009, 36(3):7072 - 7079. 被引量:1
  • 7HUANG Hong-zhong, BO Rui-feng, CHEN Wei. An integrated computational intelligence approach to product concept generation and evaluation [J]. Mechanism and Machine Theory, 2006, 41(5) : 567 - 583. 被引量:1
  • 8GENG Xiu-li, CHU Xue-ning, ZHANG Zai-fang. A new integrated design concept evaluation approach based on vague sets [J]. Expert Systems with Applications, 2010, 37(9): 6629-6638. 被引量:1
  • 9MUROFUSHI T, SUGENO M. A theory of fuzzy measures, representation, the Choquet integral and null sets [J]. Journal of Mathematical Analysis and Applications, 1991, 159(2) : 532 - 549. 被引量:1
  • 10GRABISCH M. k-order additive discrete fuzzy measures and their representation [J]. Fuzzy Sets and Systems, 1997, 92(2) :167 - 189. 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部