期刊文献+

面向人脸表情分析的表情空间模型 被引量:3

An expression space model for facial expression analysis
下载PDF
导出
摘要 首先对人脸表情的特点进行分析,给出了表情空间的定性描述.在此基础上,提出了一种兼有离散情感空间模型和连续情感空间模型特点的新的表情空间模型.为了验证该模型的合理性,利用Gabor小波特征和主分量分析方法结合混合高斯模型在人脸表情数据库JAFFE上进行了实验.对不同表情的分布规律进行了实验分析,实现了对表情空间的定性/定量描述.实验结果表明,提出的人脸表情空间模型能够对日常人脸表情进行恰当的表达. The nature of facial expressions was analyzed and a qualitative description of the corresponding facial expression space was presented. And then a new facial expression space model was proposed with the characteristics of both the discrete affective space model and continuous affective space model. To validate the rationality of the model, experiments were eonducted on a facial expression database JAFFE using the Gaussian mixture model based on the Gabor wavelet and principal component analysis. The distribution of different expressions is analyzed and the qualitative and quantitative description of the facial expression space is accomplished. The experimental results show that the proposed model can rationally represent daily facial expressions.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第2期163-168,共6页 JUSTC
关键词 表情分析 表情识别 表情空间模型 混合高斯模型 facial expression analysis facial expression recognition expression space model Gaussian mixture model
  • 相关文献

参考文献18

  • 1Yacoob Y, Davis L S. Recognizing human facial expressions from long image sequences using optical flow [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 16(6): 636-642. 被引量:1
  • 2Zhu Y, de Silva L C, Ko C C. Using moment invariants and HMM in facial expression recognition [J]. Patter Recognition Letters, 2002, 23 (1-3) : 83-91. 被引量:1
  • 3Hu T M, de Silva L C, Sengupta K. A hybrid approach of NN and HMM for facial emotion classification [J]. Pattern Recognition Letters, 2002, 23(11):1 303-1 310. 被引量:1
  • 4金辉,高文.人脸面部混合表情识别系统[J].计算机学报,2000,23(6):602-608. 被引量:37
  • 5Pardas M, Bonafonte A. Facial animation parameters extraction and expression recognition using hidden Markov models [ J ]. Signal Processing.. Image Communication, 2002, 17(9).. 675-688. 被引量:1
  • 6Calder A J, Burton A M, Miller P, et al. A principal component analysis of facial expressions [J]. Vision Research, 2001, 41(9): 1 179 1 208. 被引量:1
  • 7Dubussion S, Devoine F, Masson M. A solution for facial expression representation and recognition [J]. Signal Processing= Image Communication, 2002, 17 (9) : 657-673. 被引量:1
  • 8Matsugu M, Mori K, Mitari Y, et al. Subject independent facial expression recognition with robust face detection using a convolutional neural network [J]. Neural Networks, 2003, 16(5-6).- 555-559. 被引量:1
  • 9Zhan Y Z, Ye J F, Niu D J, et al. Facial expression recognition based on Gabor wavelet transformation and elastic templates matching[C]//Proceedings of the 3rd International Conference on Image and Graphics. Washington: IEEE Computer Society, 2004: 254-257. 被引量:1
  • 10Donato G, Bartlett M S, Hager J C, et al. Classifying facial actions [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(10) : 974- 989. 被引量:1

二级参考文献9

共引文献36

同被引文献34

  • 1王磊,邹北骥,彭小宁,周凌.一种改进的提取人脸面部特征点的AAM拟合算法[J].电子学报,2006,34(8):1424-1427. 被引量:13
  • 2何潇.“百度指数”VS“Google趋势”[J].电子商务,2006,7(10):19-20. 被引量:6
  • 3林崇德,等.心理学大辞典[M].上海:上海教育出版社,2003:271—272. 被引量:131
  • 4ISEN A M. An influence of positive affect on decision making in complex situations:Theoretical issues with practical impli- cations[J]. J ConsumPsyehol, 2001, 11(2): 75-85. 被引量:1
  • 5PEREZ-ESPINOSA H, REYES-GARCIA C A, VILLASElqOR-PINEDA L. Acoustic feature selection and classification of emotions in speech using a 3D continuous e motion model [J]. Biomed Signal Process Control, 2012, 7 (1): 79-87. 被引量:1
  • 6PICARD R W. Affective computing [M]. Cambridge: The MIT Press, 1997: 2-5. 被引量:1
  • 7KAPPAS A. To our emotions, with love: how affective should affective computing he? [C]//DMELLO S, GRAESS- ER A, SCHULLER B, et al. ACII'll Proceedings of the 4th International Conference on Affective Computing and Intelli gent Interaction-Volume PartL Heidelberg: Springer-Ver- lag, 2011:1. 被引量:1
  • 8HERNANDEZ J, HOQUE M, DREVO W, PICARD R W. Mood Meter: Counting Smiles in the Wild [C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing: Pittsburgh, Pennsylvania, USA: 2012: 301-310. 被引量:1
  • 9MOKHAYERI F, AKBARZADEH T R. Mental stress de- tection based on soft computing techniques [C]//2011 IEEE International Conference on Bioinformaties and Biomedicine, Atlanta, GA: 430-433. 被引量:1
  • 10HOQUE M E, MCDUFF D J, PICARD R Wet al. Exploring temporal patterns in classifying frustrated and delighted smiles [J]. IEEE Transactions on Affective Computing, 2012, 3 (3): 323-334. 被引量:1

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部