期刊文献+

纳米碳管增强铜基电接触材料制备的优化设计 被引量:6

Optimization design for the preparation process of copper-based electrical contact materials reinforced by carbon nanotube
下载PDF
导出
摘要 用正交试验法优化了纳米碳管增强铜基电接触材料的制备工艺,探讨了纳米碳管表面处理时间、原料球磨时间和纳米碳管含量对复合材料综合性能的影响。结果表明:最佳制备工艺参数为,表面处理时间1.0h,球磨时间8h,纳米碳管最佳质量分数为0.1%。在优化制备的纳米碳管增强铜基电接触材料中,纳米碳管分散均匀,其布氏硬度为78.3HBS 2.5/62.5/30,电阻率为2.08×10–6Ω·cm,抗熔焊及抗氧化性能均得到较大提高,能够满足电接触材料综合性能的要求。 The preparation technology for copper-based electrical contact materials reinforced by carbon nanotube was optimized by orthogonal experiment, and the effects of surface treating time, ball-milling time, and mass fraction of carbon nanotube on the comprehensive properties of this composite were studied. The results show that the optimal technological parameters were that the surface treating time of carbon nanotube is 1.0 h, ball-milling time is 8 h, and the mass fraction of carbon nanotube is 0.1%. Carbon nanotubes are distributed uniformly in composite, enhancing the Brinell hardness of composite to 78.3 HBS 2.5/62.5/30. The properties of fusion welding resistance and oxidation resistance for composite are also improved, without obvious increase in resistivity. This composite can meet the demands of the required comprehensive properties for electrical contact materials.
出处 《电子元件与材料》 CAS CSCD 北大核心 2009年第3期45-48,共4页 Electronic Components And Materials
基金 山东省重点学科建设基金资助项目(No.Y2005F58)
关键词 纳米碳管 电接触材料 正交试验 抗熔焊 布氏硬度 carbon nanotube electrical contact material orthogonal experiment fusion welding resistance brinell hardness
  • 相关文献

参考文献14

二级参考文献80

共引文献146

同被引文献65

  • 1钱宝光,耿浩然,郭忠全,陶珍东,田宪法.B_4C对铜基复合材料的力学性能与抗氧化性的影响[J].材料工程,2005,33(5):48-51. 被引量:4
  • 2Hirataka Kato, Masahiro Takama, Yoshira Iwai, edc. Wear and mechanical properties of sintered copper-tin composites eantanning graphite or molybdenum disulfideS[J].Wear, 2003,255:573 -578. 被引量:1
  • 3Thein M A, I.u T, Lai M O. Effect of milling and reinforcement on mechanical properties of nanostructured magnesium composite[J]. J Mater Process Techn, 2009,209 (9) : 4439. 被引量:1
  • 4Schaller R, Marl D, Marques S dos Santos, et al. Investigation of hydrogen storage in carbon nanotube-magnesium matrix composites[J]. Mater Sci Eng, 2009,521-522(15) : 147. 被引量:1
  • 5Morsi K, Esawi A M K,Lanka S,et al. Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders[J]. Composites, 2010,41(2) :322. 被引量:1
  • 6Ryoo J, Hajela P, Suhr J. Estimation of Young' s modulus of single-walled carbon nanotube using cellular automata[J]. Adv Eng Softw, 2007,38(8-9) : 531. 被引量:1
  • 7Neubauer E, Kitzmantel M. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J]. Compos Sci Techn,2010,70(16):2228. 被引量:1
  • 8Chowdury D F, Cui Z F. Carbon nanotube length reduction techniques, and characterisation of oxidation state using quasi-elastic light scattering[J]. Carbon, 2011,49 (3): 862. 被引量:1
  • 9Esawi A M K, Mort K, Sayed A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites [J]. Mater Sci Eng,2009,508(1-2): 167. 被引量:1
  • 10Jafari M, Abbasi M H, Enayati M H, et al. Mechanical properties of nanostructured Al2024-MWCNT composite prepared by optimized mechanical milling and hot pressing methods[J]. Adv Powder Techn, 2011,23 (2): 205. 被引量:1

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部