摘要
A particular emphasis is placed on the virtual prototype technology (VPT) of axial piston pump. With this technology it is convenient and flexible to build a complicated 3D virtual based on real physical model. The actual kinematics pairs of the parts were added on the model. The fluid characters were calculated by hydraulic software. The shape of the parts, the flexible body of parts, etc were improved in this prototype. So the virtual prototype of piston pump can work in computer like a real piston pump, and the flow ripple, pressure pulsation, motion principle, stress of parts, etc can be investigated. The development of the VPT is introduced at the beginning, and the modeling process of the virtual prototype is explained. Then a special emphasis is laid on the relationship between the dynamics model and the hydraulic model, and the simulations on the flow ripple, pressure pulsation, motion principle, the stress and strain distribution of the middle shaft and piston are operated. Finally, the advantages and disadvantages of the VPT are discussed. The improved virtual prototype of piston pump more tally with the real situation and the VPT has a great potential in simulation on hydraulic components.
A particular emphasis is placed on the virtual prototype technology (VPT) of axial piston pump. With this technology it is convenient and flexible to build a complicated 3D virtual based on real physical model. The actual kinematics pairs of the parts were added on the model. The fluid characters were calculated by hydraulic software. The shape of the parts, the flexible body of parts, etc were improved in this prototype. So the virtual prototype of piston pump can work in computer like a real piston pump, and the flow ripple, pressure pulsation, motion principle, stress of parts, etc can be investigated. The development of the VPT is introduced at the beginning, and the modeling process of the virtual prototype is explained. Then a special emphasis is laid on the relationship between the dynamics model and the hydraulic model, and the simulations on the flow ripple, pressure pulsation, motion principle, the stress and strain distribution of the middle shaft and piston are operated. Finally, the advantages and disadvantages of the VPT are discussed. The improved virtual prototype of piston pump more tally with the real situation and the VPT has a great potential in simulation on hydraulic components.
基金
supported by National Key Technology R&D Program of the 11th Five-year Plan of China (Grant No. 2006BAF01B01, 2006BAF01B04)