期刊文献+

金融时间序列挖掘综合模型 被引量:4

Integrated Model of Financial Time Series Mining
下载PDF
导出
摘要 时间序列挖掘是数据挖掘的重要组成部分,本文通过对金融数据按地点划分,经过平滑、聚类处理,再对同一类别的各条金融序列分别发现其序列内频繁模式,综合一个得到同类别多条金融时间序列的复合挖掘模型。农业价格时序挖掘实践证明,该金融时间序列挖掘模型利用挖掘出来的知识对金融时间序列趋势进行了定性分析,能有效地指导用户的市场行为,辅助用户决策。
出处 《计算机系统应用》 2009年第2期46-48,共3页 Computer Systems & Applications
基金 广西自然科学基金项目(桂科自0832246) 广西青年科学基金项目(桂科青0832084) 广西研究生教育创新计划资助项目(2008105950810M420)
  • 相关文献

参考文献10

  • 1Agrawa L R, Ramakrishnan S. Fast algorithms for mining association rules in iarge databases. Proceedings of the Twentieth International Conference on Very Large Databases. Santiago: ACM Press, 1994:487 - 499. 被引量:1
  • 2Manila H, Toivonen H, Verkamo AI. Discovery frequent episodes in sequences. Proc ofKDD95.1995. 被引量:1
  • 3Das G~ Lin K, Mannila H, et al. Rule discovery from time series. Proceedings of Fourth Annual Conference on Knowledge Discovery and Data'Mining. New York: AAAI Press, 1998:16-22 Montreal: AAAI Press, 1995:210 - 215. 被引量:1
  • 4胡晓青,王波.基于数据挖掘的金融时序频繁模式的快速发现[J].上海理工大学学报,2006,28(4):381-385. 被引量:6
  • 5Kwok CO, Etzioni O, Weld DS. Scaling QuestionAnswering to the Web. ACM Trans. Information Systems, 2001, 19 (3):242 - 262. 被引量:1
  • 6史忠植著..知识发现[M].北京:清华大学出版社,2002:402.
  • 7Whitehe SD. Auto-FAQ: An experiment in cyberspace leveraging. Proceedings of the Second International WWW Conference. volume 1995:25 - 38. 被引量:1
  • 8王晓晔..时间序列数据挖掘中相似性和趋势预测的研究[D].天津大学,2003:
  • 9黄河,黄轲,杭小树,熊范纶.时间序列中快速模式发现算法的研究[J].计算机工程与应用,2003,39(21):192-194. 被引量:6
  • 10Oyama S, Kokubo T, Ishida T. Domain-Specific Web Search with Keyword Spices. IEEE Trans. Knowledge and Data Eng, 2004, 16(1): 17 - 27. 被引量:1

二级参考文献11

  • 1Chang Shing Perng,Haixun Wang,Sylvia R Zhang et al.Landmarks:a new model for similarity-based pattern querying in time series database.In Proceedings of the 16th International Conference on Data Engineering,San Diego, California, USA, 2000: 33--42. 被引量:1
  • 2R Agrawal,C Faloutsos,A Swami.Efficient similarity search in sequences database[C].In:4th International Conference on Foundations of Data Organization and Algorithms, ,Chicago,minois,USA,1993:69-84. 被引量:1
  • 3C Faloutsos,M Ranganathan,Y Mandoponlos.Fast subsequence matching in time-series databases[C].In:Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, Minnesota, 1994:419-429. 被引量:1
  • 4Tolga Bozkaya, Nasser Yazdani, Meral zsoyoglu.Matching and Indexing Sequences of Different Lengths[C].In:Proceedings of the Sixth International Conference on Information and Knowledge Management, Las Vegas,Nevada, 1997:128-135. 被引量:1
  • 5B-K Yi,H Jagadish,C Faloutsos.Efficient retrieval of similar time sequences under time warping[C].In:Proceedings of the Fourteenth International Conference on Data Engineering,Orlando,Florida,USA, 1998:201 ~208. 被引量:1
  • 6AGRAWAL R,RAMAKRISHNAN S.Fast algorithms for mining association rules in large databases[A].Proceedings of the Twentieth International Conference on Very Large Databases[C],Santiago:ACM Press,1994:487-499. 被引量:1
  • 7MANILA H,TOIVONEN H,VERKAMO A I.Discovery frequent episodes in sequences[A].Proc of KDD-95[C].Montreal:AAAI Press,1995:210-215. 被引量:1
  • 8DAS G,LIN K,MANNILA H,et al.Rule discovery from time series[A].Proceedings of Fourth Annual Conference on Knowledge Discovery and Data Mining[C].New York:AAAI Press,1998:16-22. 被引量:1
  • 9李斌,谭立湘,章劲松,庄镇泉.面向数据挖掘的时间序列符号化方法研究[J].电路与系统学报,2000,5(2):9-14. 被引量:29
  • 10蔡智,岳丽华,王熙法.时序模式发现算法研究[J].计算机研究与发展,2000,37(9):1107-1113. 被引量:15

共引文献9

同被引文献20

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部