摘要
利用有限群的某些子群弱补性给出了一个群是F热-群的一个充分条件。设F=LF(f)是一个子群闭的局部群系,满足每个极小非F-群是可解的,N G,G/N∈F若N的每个p阶子群含于Zf∞(G),且4阶循环群在G中弱补,则G∈F。
A sufficient condition of F-group is given by using weakly-complemented of some subgroups for a finite group. Let F = LF(f) be a subgroup-closed local formation such that minial non- F- groupa is solvable. It is proved that: if there exists a normal subgroups N of G such that G/N E Fand every cyclic subgroups of N of order 4 is weakly-complemented in G and every element of N of prime order is contained in Z^f= (G) ,then G is a Fgroup.
出处
《四川理工学院学报(自然科学版)》
CAS
2009年第1期9-10,共2页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词
弱补子群
F-群
局部群系
可解群
weakly-complemented subgroups
F- group
solvable subgroup
local formation