期刊文献+

边-超欧拉图的一个度数和条件(英文) 被引量:1

A Degree-Sum Condition for Edge-Supereulerian Graphs
下载PDF
导出
摘要 图G称为边-超欧拉图,如果对于它的任一条边e,都有欧拉生成子图H包含e.给出了边-超欧拉图的一个度数和条件,即:设G是2-边连通的n个顶点的简单图,如果n≥100并且对于图G的任意两个不相邻的顶点u和v都有d(u)+d(v)≥52n,那么对于图G的任意一条边e,或者G有欧拉生成子图H包含e,或者Ge(G关于e的剖分图)可以被收缩成K2,3或K2,5. A graph G is called edge-supereulerian if for any edge e in E(G), there is a spanning eulerian subgraph H which contains e. In this paper, a degree-sum condition for edge-supereulerian graph is present, i. e. when G is a 2-edge-connected simple graph on n vertices, if n ≥ 100 and d(u) +d(v) ≥ 2/5n whenever u and v are not adjacent in G, then for any edge e in E(G) there is a spanning eulerian subgraph H of G that contains e, or G, (subdivided graph by e) can be contracted to K2.3 or K2.5.
作者 王斌
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期16-19,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆市自然科学基金资助项目(CSTC,2007BA2024) 重庆工商大学青年基金资助项目(0752012)
关键词 边-超欧拉性 可折叠 简化图 边不交生成树 剖分 收缩 edge-supereulerian collapsible reduced graph edge-disjoint spanning trees subdividing contracting
  • 相关文献

参考文献7

二级参考文献19

  • 1[1]BONDY J A,MURTY S S. Graph Theory with Applications [M]. New York: American Elsevier,1976. 被引量:1
  • 2[2]CATLIN P A. A Reduction Method to Find Spanning Eulerian Subgraphs [J]. J Graph Theory,1988,12(1):29-44. 被引量:1
  • 3[3]CATLIN P A. Supereulerian Graphs: A Survey [J]. J Graph Theory,1992,16(2): 177-196. 被引量:1
  • 4[4]CATLIN P A. A Reduction Criterion for Supereulerian Graphs [J]. J Graph Theory: 1996,22(2): 151-153. 被引量:1
  • 5[1]Bondy J A,Murty U S R.Graph Theory with Application[M].New York:North-Holland,1976. 被引量:1
  • 6[3]Pulley Blank W R.A Note on Graphs Spanned by Eulerian Graphs[J].J Graph Theory,1979,3(4):309-310. 被引量:1
  • 7[4]Boesch F T,Suffel C,Tindell R.The Spanning Subgraphs of Eulerian Graphs[J].J Graph Theory,1977,1(1):79-84. 被引量:1
  • 8[5]Catlin P A.A Reduction Method to Find Spanning Eulerian Subgraphs[J].J Graph Theory,1988,12(1):29-45. 被引量:1
  • 9[6]Catlin P A.Supereulerian Graph:A survy[J].J Graph Theory,1992,16(2):177-196. 被引量:1
  • 10[7]Chen Z H,Lai H J.Reduction Techniques for Supereulerian Graphs and Related Topics-an Update[A].in:Ku TungHsin(ED),Combinatorics and Graph Theory 95 Vol[C].World Scientific.Singapore,London,1995.53-69. 被引量:1

共引文献14

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部