期刊文献+

核实数据下响应变量缺失的线性EV模型经验似然推断 被引量:6

EMPIRICAL LIKELIHOOD INFERENCE OF LINEAR ERRORS-IN-VARIABLES MODELS UNDER VALIDATION DATA FOR MISSING RESPONSE DATA
原文传递
导出
摘要 考虑响应变量随机缺失而协变量带有误差的线性模型,借助于核实数据和借补方法,构造了回归系数的两种经验似然比,证明了所提出的估计的经验对数似然比渐近于一个自由度为1的独立X^2变量的加权和;而经调整后所得的调整经验对数似然比渐近于自由度为P的X^2分布,该结果可以用来构造未知参数的置信域.此外,我们也构造了响应均值的调整经验对数似然比统计量,并证明了所提出的统计量渐近于X^2分布,可用此结果构造响应均值的置信域.通过模拟研究比较了置信域的精度及其平均区间长度. In this paper, linear errors-in-covariables models are considered in the presence of missing data on the responses. Two empirical log-likelihood ratio statistics for the unknown regression coefficients are constructed with the help of validation data and the imputation methods. The estimated empirical log-likelihood is proved to be asymptotically distributed as a weighted sums of independent chi-square random variable with 1 degree of freedom and the adjusted empirical log-likelihood is shown to be asymptotically distributed as chi-square with p degree of freedom, and hence they can be used to construct the confidence region of the parameter. In addition, an adjusted empirical likelihood approach to inference on the mean of the response variable is developed. It is shown that the proposed statistics have the asymptotic chi-square distribution, and the corresponding empirical likelihood confidence interval for the mean is constructed. A simulation study is conducted to compare the proposed methods in terms of coverage accuracies and average lengths of the confidence intervals.
出处 《系统科学与数学》 CSCD 北大核心 2009年第1期94-108,共15页 Journal of Systems Science and Mathematical Sciences
基金 中国博士后科学基金(20080430633) 上海市博士后科研资助计划(08R214121) 国家自然科学基金(10871013) 高等学校博士学科点专项科研基金(20070005003) 北京市属市管高等学校人才强教计划 河南省自然科学研究(2008B110009)资助项目
关键词 线性EV模型 经验似然 核实数据 缺失数据 置信域 Linear errors-in-variables model, empirical likelihood, validation data, missing data, confidence region.
  • 相关文献

参考文献11

  • 1Fuller W A. Measurement Error Models. New York: Wiley, 1987. 被引量:1
  • 2Cui H J and Chen S X. Empirical likelihood confidence region for parameter in the errors-in- variables models. J. Multivariate Anal., 2003, 84(1): 101-115. 被引量:1
  • 3Sepanski J H and Lee L F. Semiparametric estimation of nonlinear error-in-variables models with validation study. J. Nonparametric Statist., 1995, 4: 365-394. 被引量:1
  • 4Xue L G. Empirical likelihood inference in nonlinear semiparametric EV models with validation data. Acta Mathematica Sinica, Chinese Series, 2006, 49(1): 145-154. 被引量:1
  • 5Wang Q H and Rao J N K. Empirical likelihood-based inference in linear errors-in-covariables models with validation data. Biometrika, 2002, 89(2): 345-357. 被引量:1
  • 6Wang Q H. Dimension reduction in partly linear error-in-response models with validation data. J. Multivariate Anal., 2003, 85: 234-252. 被引量:1
  • 7Wang Q H. Estimation of partial linear error-in-variables models with validation data. J. Multi- variate Anal., 1999, 69: 30-64. 被引量:1
  • 8Owen A. Empirical likelihood for linear models. Ann. Statist., 1991, 19(4): 1725-1747. 被引量:1
  • 9Wang Q H and Rao J N K. Empirical likelihood-based inference in linear models with missing data. Scan. J. Statist., 2002, 29: 563-576. 被引量:1
  • 10Qin G S and Jing B Y. Empirical likelihood for censored linear regression. Scan. J. Statist., 2001, 28: 661-673. 被引量:1

同被引文献29

  • 1XUE Liugen~1 & ZHU Lixing~2 1. College of Applied Sciences,Beijing University of Technology,Beijing 100022,China,2. Department of Mathematics,Hong Kong Baptist University,Hong Kong,China.Empirical likelihood confidence regions of the parameters in a partially linear single-index model[J].Science China Mathematics,2005,48(10):1333-1348. 被引量:13
  • 2Robins J M,Rotnitzky A,Zhao L.Estimation of regression coefficients when some regressors are not always observed.J Amer Statist Assoc,1994;89:846-866. 被引量:1
  • 3Li G R,Xue L G.Empirical likelihood confidence region for the parameter in a partially linear errors-in-variables model.Commun Statist Theor Meth,2008;37(10):1552-1564. 被引量:1
  • 4Owen A B.Empirical likelihood ratio confidence regions Ann Statist,1990; 18(1):90-120. 被引量:1
  • 5Owen A B. Empirical Likelihood Ratio Confidence Intervals for a Single Functional. Biometrika, 1988, 75:237-249. 被引量:1
  • 6Owen A B. Empirical Likelihood Ratio Confidence Regions. The Annals of Statistics, 1990, 18: 90-120. 被引量:1
  • 7Chen S X. Empirical Likelihood Confidence Intervals for Linear Regression Coefficients. Journal of Multivariate Analysis, 1994, 49:24-40. 被引量:1
  • 8Chen S X, Hall P. Smoothed Empirical Likelihood Confidence Intervals for Quantiles. The Annals of Statistics, 1993, 21:1166-1181. 被引量:1
  • 9Wang Q H, Rao J N K. Empirical Likelihood for Linear Regression Models under Imputation for Mossing Response. The Canadian Journal Statistics, 2001, 29:597-608. 被引量:1
  • 10Wang Q H, Rao J N K. Empirical Likelihood-based Inference under Impitation for Missing Response Data. The Annals of Statistics, 2002b, 30:896~924. 被引量:1

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部