期刊文献+

基于语音接口的MOST网络设备控制 被引量:2

Control of MOST network equipment based on speech interface
下载PDF
导出
摘要 MOST网络将成为汽车主干网络,而语音控制为汽车多媒体娱乐提供了便捷的人机接口,将两者结合具有良好的应用前景。在分析MOST网络设备控制及语音识别原理的基础上,提出了一种在MOST网络上构建人机语音接口的方法,并给出实现该方法的硬件组成和软件架构。通过小词汇量词库对该系统进行实验,实验结果表明,该方法达到了实际应用的要求。 MOST will become the backbone of vehicle network, speech control can provide the human-machine interface for vehicle multimedia entertainment, and combing with these two techniques will have a good prospect. Based on analyzing the control mode of MOST devices and principle of speech control, a method of building human-machine speech interface in MOST network is presented, and hardware composition and software architecture of system realization are also introduced. A experiment is set up to verify the system with small-vocabulary thesaurus, and the result shows that the method presented meet the requirement of practical application.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第2期268-270,共3页 Computer Engineering and Design
基金 吉林省科技发展计划基金项目(2007-1423)
关键词 语音识别 MOST 总线 接口技术 语音控制 speech recognition MOST bus interface technology speech control
  • 相关文献

参考文献11

二级参考文献17

  • 1夏克文,李昌彪,沈钧毅.前向神经网络隐含层节点数的一种优化算法[J].计算机科学,2005,32(10):143-145. 被引量:122
  • 2哈根.神经网络设计[M].北京:机械工业出版社,2002. 被引量:15
  • 3Simon Haykin S.神经网络原理[M].北京:机械工业出版社,2004. 被引量:1
  • 4Wilamowski B M,YixinChen,Malinowski A.Efficient algorithm for training neural networks with one hidden layer[C].Washington,DC:presented at 1999 International Joint Conference on Neural Networks-IJCNN'99,1999.1725-1728. 被引量:1
  • 5Bogdan Wilamowski,Sedar Iplikci,Okayay Kayank,et al.An algorithm for fast convergence training neural networks[C].Washington DC,International Joint Conference on Neural Networks (IJCNN'01),2001.1778-1782. 被引量:1
  • 6Pascal W, Leon J. Using confidence measure and domain knowledge to improve speech recognition[A]. EuroSpeech[C]. 2003. 901~904,2713~2716. 被引量:1
  • 7Zhu X, Chen Y. Feature select in large vocabulary continuous speech recognition[A]. Proceedings of ICSP[C]. 2002. Si0223. 被引量:1
  • 8Fukuda, Nitta. Orthogonalized distinctive phonetic feature extraction for noise-robust automatic speech recognition[A]. IEICE Transactions on Information and Systems[C]. 2004.1110~1118. 被引量:1
  • 9Hiroya S, Honda M. Speaker adaptation method for acoustic-to-articulatory inversion using an HMM-based speech production model[A]. IEICE Transactions on Information and Systems[C].2004.1071~1078. 被引量:1
  • 10B.H.Juang. The past, present and future of speech processing[J]. IEEE Signal Processing Magzine, May, 1998. 被引量:1

共引文献45

同被引文献44

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部