摘要
为了从消费者偏好序列中发现市场细分结构,采用数据挖掘领域中的符号序列聚类方法,提出一种符号序列聚类的研究方法和框架,给出RSM相似性度量模型。调整RSM模型参数,使得RSM可以变为与编辑距离、海明距离等价的相似性度量。通过RSM与其他序列相似性度量的比较,表明RSM具有更强的表达相似性概念的能力。由于RSM能够表达不同的相似性概念,从而使之能适用于不同的应用环境,并在其基础上提出自组织特征映射退火符号聚类模型,使得从消费者偏好进行市场细分结构研究的研究途径在实际应用中得以实现。
From a consumer point of the sequence of preference, data mining is used in the field of symbolic sequence clustering methods to detect market segmentation structure. This paper proposes a symbolic sequence clustering methodology and framework, gives the similarity metric RSM model. By adjusting RSM model, parameters can be changed into RSM and edit distance, Hamming distance equivalent to the similarity metric. RSM is compared with other sequence similarity metric, and is more similar to the expression of the concept of capacity. As to express different similarity, the concept of RSM can be applied to different applications environment. Based on the SOM annealing symbol clustering model, the consumer preference for market segmentation can be studied in the structure, which means it is realized in practical application.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第1期178-179,194,共3页
Computer Engineering
基金
国家"863"计划基金资助项目"CIMS模型驱动的智能化软构件与软件生成技术"(2006AA01Z167)
关键词
符号序列聚类
数据挖掘
相似性模型
symbolic sequence clustering
data mining
similarity model